Tolerance Envelopes of Planar Parametric Part Models

dc.contributor.authorOstrovsky-Berman, Y.en_US
dc.contributor.authorJoskowicz, L.en_US
dc.contributor.editorGershon Elber and Nicholas Patrikalakis and Pere Bruneten_US
dc.date.accessioned2016-02-17T18:02:45Z
dc.date.available2016-02-17T18:02:45Z
dc.date.issued2004en_US
dc.description.abstractWe present a framework for the systematic study of parametric variation in planar mechanical parts and for ef ciently computing approximations of their tolerance envelopes. Part features are speci ed by explicit functions de ning their position and shape as a function of parameters whose nominal values vary along tolerance intervals. Their tolerance envelopes model perfect form Least and Most Material Conditions (LMC/MMC). Tolerance envelopes are useful in many design tasks such as quantifying functional errors, identifying unexpected part collisions, and determining device assemblability. We derive geometric properties of the tolerance envelopes and describe four ef cient algorithms for computing rst-order linear approximations with increasing accuracy. Our experimental results on three realistic examples show that the implemented algorithms produce better results in terms of accuracy and running time than the commonly used Monte Carlo method.en_US
dc.description.sectionheadersTolerancing and Collision Detectionen_US
dc.description.seriesinformationSolid Modelingen_US
dc.identifier.doi10.2312/sm.20041384en_US
dc.identifier.isbn3-905673-55-Xen_US
dc.identifier.issn1811-7783en_US
dc.identifier.pages135-143en_US
dc.identifier.urihttps://doi.org/10.2312/sm.20041384en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.3 [Computational Geometry and Object Modeling]en_US
dc.subjectCurveen_US
dc.subjectsurfaceen_US
dc.subjectsoliden_US
dc.subjectand object representationsen_US
dc.subjectJ.6 [Computeren_US
dc.subjectaided design (CAD)]en_US
dc.subjectComputer Aided Tolerancingen_US
dc.titleTolerance Envelopes of Planar Parametric Part Modelsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
135-143_ostrovsky-berman.pdf
Size:
348.86 KB
Format:
Adobe Portable Document Format