Weighted Feature Graph via Hierarchical Clustering

dc.contributor.authorLadeuil, Mathieuen_US
dc.contributor.authorTrabucato, Marcen_US
dc.contributor.authorVaisse, Alexisen_US
dc.contributor.authorFaraj, Nouraen_US
dc.contributor.editorGünther, Tobiasen_US
dc.contributor.editorMontazeri, Zahraen_US
dc.date.accessioned2025-05-09T09:31:42Z
dc.date.available2025-05-09T09:31:42Z
dc.date.issued2025
dc.description.abstractIn computer graphics, mesh clustering is a key component of various applications such as shape matching or skinning weight computation, especially when using hierarchical clustering. Garland et al. [GWH01] proposed to build a hierarchy of clusters by simplifying the dual graph of the mesh. We extend their method to provide control over cluster shapes through a combination of error metrics. Additionally, we alleviate the challenging task of finding an optimal threshold (stopping criterion) by considering a weighted feature graph that incorporates persistent cluster information throughout the hierarchy.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationEurographics 2025 - Posters
dc.identifier.doi10.2312/egp.20251025
dc.identifier.isbn978-3-03868-269-1
dc.identifier.issn1017-4656
dc.identifier.pages2 pages
dc.identifier.urihttps://doi.org/10.2312/egp.20251025
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/egp20251025
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleWeighted Feature Graph via Hierarchical Clusteringen_US
Files
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
egp20251025.pdf
Size:
33.58 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
poster1017_poster_pdf.pdf
Size:
5.1 MB
Format:
Adobe Portable Document Format