Analytic Anti-Aliasing of Linear Functions on Polytopes

dc.contributor.authorAuzinger, Thomasen_US
dc.contributor.authorGuthe, Michaelen_US
dc.contributor.authorJeschke, Stefanen_US
dc.contributor.editorP. Cignoni and T. Ertlen_US
dc.date.accessioned2015-02-28T06:52:23Z
dc.date.available2015-02-28T06:52:23Z
dc.date.issued2012en_US
dc.description.abstractThis paper presents an analytic formulation for anti-aliased sampling of 2D polygons and 3D polyhedra. Our framework allows the exact evaluation of the convolution integral with a linear function defined on the polytopes. The filter is a spherically symmetric polynomial of any order, supporting approximations to refined variants such as the Mitchell-Netravali filter family. This enables high-quality rasterization of triangles and tetrahedra with linearly interpolated vertex values to regular and non-regular grids. A closed form solution of the convolution is presented and an efficient implementation on the GPU using DirectX and CUDA C is described.en_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume31
dc.identifier.doi10.1111/j.1467-8659.2012.03012.x
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/j.1467-8659.2012.03012.xen_US
dc.publisherThe Eurographics Association and John Wiley and Sons Ltd.en_US
dc.titleAnalytic Anti-Aliasing of Linear Functions on Polytopesen_US
Files