DiffusionPointLabel: Annotated Point Cloud Generation with Diffusion Model

Loading...
Thumbnail Image
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association and John Wiley & Sons Ltd.
Abstract
Point cloud generation aims to synthesize point clouds that do not exist in supervised dataset. Generating a point cloud with certain semantic labels remains an under-explored problem. This paper proposes a formulation called DiffusionPointLabel, which completes point-label pair generation based on a DDPM generative model (Denoising Diffusion Probabilistic Model). Specifically, we use a point cloud diffusion generative model and aggregate the intermediate features of the generator. On top of this, we propose Feature Interpreter that transforms intermediate features into semantic labels. Furthermore, we employ an uncertainty measure to filter unqualified point-label pairs for a better quality of generated point cloud dataset. Coupling these two designs enables us to automatically generate annotated point clouds, especially when supervised point-labels pairs are scarce. Our method extends the application of point cloud generation models and surpasses state-of-the-art models.
Description

CCS Concepts: Methods and Applications → Point-Based Methods

        
@article{
10.1111:cgf.14663
, journal = {Computer Graphics Forum}, title = {{
DiffusionPointLabel: Annotated Point Cloud Generation with Diffusion Model
}}, author = {
Li, Tingting
and
Fu, Yunfei
and
Han, Xiaoguang
and
Liang, Hui
and
Zhang, Jian Jun
and
Chang, Jian
}, year = {
2022
}, publisher = {
The Eurographics Association and John Wiley & Sons Ltd.
}, ISSN = {
1467-8659
}, DOI = {
10.1111/cgf.14663
} }
Citation
Collections