Out-of-the-loop Autotuning of Metropolis Light Transport with Reciprocal Probability Binning

dc.contributor.authorHerveau, Killianen_US
dc.contributor.authorOtsu, Hisanarien_US
dc.contributor.authorDachsbacher, Carstenen_US
dc.contributor.editorBabaei, Vahiden_US
dc.contributor.editorSkouras, Melinaen_US
dc.date.accessioned2023-05-03T06:02:50Z
dc.date.available2023-05-03T06:02:50Z
dc.date.issued2023
dc.description.abstractThe performance of Markov Chain Monte Carlo (MCMC) rendering methods depends heavily on the mutation strategies and their parameters. We treat the underlying mutation strategies as black-boxes and focus on their parameters. This avoids the need for tedious manual parameter tuning and enables automatic adaptation to the actual scene. We propose a framework for out-of-the-loop autotuning of these parameters. As a pilot example, we demonstrate our tuning strategy for small-step mutations in Primary Sample Space Metropolis Light Transport. Our σ-binning strategy introduces a set of mutation parameters chosen by a heuristic: the inverse probability of the local direction sampling, which captures some characteristics of the local sampling. We show that our approach can successfully control the parameters and achieve better performance compared to non-adaptive mutation strategies.en_US
dc.description.sectionheadersRendering and Simulation
dc.description.seriesinformationEurographics 2023 - Short Papers
dc.identifier.doi10.2312/egs.20231005
dc.identifier.isbn978-3-03868-209-7
dc.identifier.issn1017-4656
dc.identifier.pages21-24
dc.identifier.pages4 pages
dc.identifier.urihttps://doi.org/10.2312/egs.20231005
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egs20231005
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Ray tracing
dc.subjectComputing methodologies → Ray tracing
dc.titleOut-of-the-loop Autotuning of Metropolis Light Transport with Reciprocal Probability Binningen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
021-024.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format