Projecting Points onto Planar Parametric Curves by Local Biarc Approximation

dc.contributor.authorSong, Hai-Chuanen_US
dc.contributor.authorShi, Kan-Leen_US
dc.contributor.authorYong, Jun-Haien_US
dc.contributor.authorZhang, Senen_US
dc.contributor.editorJohn Keyser and Young J. Kim and Peter Wonkaen_US
dc.date.accessioned2014-12-16T07:23:03Z
dc.date.available2014-12-16T07:23:03Z
dc.date.issued2014en_US
dc.description.abstractThis paper proposes a geometric iteration algorithm for computing point projection and inversion on surfaces based on local biarc approximation. The iteration begins with initial estimation of the projection of the prescribed test point. For each iteration, we construct a 3D biarc on the original surface to locally approximate the original surface starting from the current projection point. Then we compute the projection point for the next iteration, as well as the parameter corresponding to it, by projecting the test point onto this biarc. The iterative process terminates when the projection point satisfies the required precision. Examples demonstrate that our algorithm converges faster and is less dependent on the choice of the initial value compared to the traditional geometric iteration algorithms based on single-point approximation.en_US
dc.description.seriesinformationPacific Graphics Short Papersen_US
dc.identifier.isbn978-3-905674-73-6en_US
dc.identifier.urihttps://doi.org/10.2312/pgs.20141248en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectCurveen_US
dc.subjectsurfaceen_US
dc.subjectsoliden_US
dc.subjectand object representationsen_US
dc.titleProjecting Points onto Planar Parametric Curves by Local Biarc Approximationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
031-036.pdf
Size:
3.77 MB
Format:
Adobe Portable Document Format
Collections