StyleBlend: Enhancing Style-Specific Content Creation in Text-to-Image Diffusion Models

dc.contributor.authorChen, Zichongen_US
dc.contributor.authorWang, Shijinen_US
dc.contributor.authorZhou, Yangen_US
dc.contributor.editorBousseau, Adrienen_US
dc.contributor.editorDay, Angelaen_US
dc.date.accessioned2025-05-09T09:12:07Z
dc.date.available2025-05-09T09:12:07Z
dc.date.issued2025
dc.description.abstractSynthesizing visually impressive images that seamlessly align both text prompts and specific artistic styles remains a significant challenge in Text-to-Image (T2I) diffusion models. This paper introduces StyleBlend, a method designed to learn and apply style representations from a limited set of reference images, enabling content synthesis of both text-aligned and stylistically coherent. Our approach uniquely decomposes style into two components, composition and texture, each learned through different strategies. We then leverage two synthesis branches, each focusing on a corresponding style component, to facilitate effective style blending through shared features without affecting content generation. StyleBlend addresses the common issues of text misalignment and weak style representation that previous methods have struggled with. Extensive qualitative and quantitative comparisons demonstrate the superiority of our approach.en_US
dc.description.number2
dc.description.sectionheadersThe Artful Edit: Stylization and Editing for Images and Video
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume44
dc.identifier.doi10.1111/cgf.70034
dc.identifier.issn1467-8659
dc.identifier.pages10 pages
dc.identifier.urihttps://doi.org/10.1111/cgf.70034
dc.identifier.urihttps://diglib.eg.org/handle/10.1111/cgf70034
dc.publisherThe Eurographics Association and John Wiley & Sons Ltd.en_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Image processing; Image representations
dc.subjectComputing methodologies → Image processing
dc.subjectImage representations
dc.titleStyleBlend: Enhancing Style-Specific Content Creation in Text-to-Image Diffusion Modelsen_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
cgf70034.pdf
Size:
144.21 MB
Format:
Adobe Portable Document Format