Persistent Homology and the Discrete Laplace Operator For Mesh Similarity
No Thumbnail Available
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
We use persistent homology along with the eigenfunctions of the Laplacian to study similarity amongst geometric and combinatorial objects. Our method relies on studying the lower-star filtration induced by the eigenfunctions of the Laplacian. This gives us a shape descriptor that inherits the rich information encoded in the eigenfunctions of the Laplacian. Moreover, the similarity between these descriptors can be easily computed using tools that are readily available in Topological Data Analysis. We provide experiments to illustrate the effectiveness of the proposed method.
Description
@inproceedings{10.2312:cgvc.20201153,
booktitle = {Computer Graphics and Visual Computing (CGVC)},
editor = {Ritsos, Panagiotis D. and Xu, Kai},
title = {{Persistent Homology and the Discrete Laplace Operator For Mesh Similarity}},
author = {Hajij, Mustafa and Zhang, Yunhao and Liu, Haowen and Rosen, Paul},
year = {2020},
publisher = {The Eurographics Association},
ISBN = {978-3-03868-122-9},
DOI = {10.2312/cgvc.20201153}
}