Visual Analytics for Fraud Detection: Focusing on Profile Analysis

dc.contributor.authorLeite, Roger Almeidaen_US
dc.contributor.authorGschwandtner, Theresiaen_US
dc.contributor.authorMiksch, Silviaen_US
dc.contributor.authorGstrein, Erichen_US
dc.contributor.authorKuntner, Johannesen_US
dc.contributor.editorTobias Isenberg and Filip Sadloen_US
dc.date.accessioned2016-06-09T09:33:32Z
dc.date.available2016-06-09T09:33:32Z
dc.date.issued2016en_US
dc.description.abstractFinancial institutions are always interested in ensuring security and quality for their customers. Banks, for instance, need to identify and avoid harmful transactions. In order to detect fraudulent operations, data mining techniques based on customer profile generation and verification are commonly used. However, these approaches are not supported by Visual Analytics techniques yet. We propose a Visual Analytics approach for supporting and fine-tuning profile analysis and reducing false positive alarms.en_US
dc.description.sectionheadersPosteren_US
dc.description.seriesinformationEuroVis 2016 - Postersen_US
dc.identifier.doi10.2312/eurp.20161138en_US
dc.identifier.isbn978-3-03868-015-4en_US
dc.identifier.issn-en_US
dc.identifier.pages45-47en_US
dc.identifier.urihttps://doi.org/10.2312/eurp.20161138en_US
dc.identifier.urihttps://diglib.eg.org:443/handle/10
dc.publisherThe Eurographics Associationen_US
dc.subjectVisual Knowledge Discoveryen_US
dc.subjectTime Series Dataen_US
dc.subjectBusiness and Finance Visualizationen_US
dc.subjectFinancial Fraud Detection.en_US
dc.titleVisual Analytics for Fraud Detection: Focusing on Profile Analysisen_US
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
045-047.pdf
Size:
332.51 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
poster_sketch_1.1.pdf
Size:
3.08 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
poster_video.mp4
Size:
5.45 MB
Format:
Unknown data format