Real-time Neural Rendering of LiDAR Point Clouds

dc.contributor.authorVANHERCK, Jonien_US
dc.contributor.authorZoomers, Brenten_US
dc.contributor.authorMertens, Tomen_US
dc.contributor.authorJorissen, Lodeen_US
dc.contributor.authorMichiels, Nicken_US
dc.contributor.editorCeylan, Duyguen_US
dc.contributor.editorLi, Tzu-Maoen_US
dc.date.accessioned2025-05-09T09:36:06Z
dc.date.available2025-05-09T09:36:06Z
dc.date.issued2025
dc.description.abstractStatic LiDAR scanners produce accurate, dense, colored point clouds, but often contain obtrusive artifacts which makes them ill-suited for direct display. We propose an efficient method to render more perceptually realistic images of such scans without any expensive preprocessing or training of a scene-specific model. A naive projection of the point cloud to the output view using 1×1 pixels is fast and retains the available detail, but also results in unintelligible renderings as background points leak between the foreground pixels. The key insight is that these projections can be transformed into a more realistic result using a deep convolutional model in the form of a U-Net, and a depth-based heuristic that prefilters the data. The U-Net also handles LiDAR-specific problems such as missing parts due to occlusion, color inconsistencies and varying point densities. We also describe a method to generate synthetic training data to deal with imperfectly-aligned ground truth images. Our method achieves real-time rendering rates using an off-the-shelf GPU and outperforms the state-of-the-art in both speed and quality.en_US
dc.description.sectionheadersShort Paper 3
dc.description.seriesinformationEurographics 2025 - Short Papers
dc.identifier.doi10.2312/egs.20251041
dc.identifier.isbn978-3-03868-268-4
dc.identifier.issn1017-4656
dc.identifier.pages4 pages
dc.identifier.urihttps://doi.org/10.2312/egs.20251041
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/egs20251041
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Rendering; Neural networks
dc.subjectComputing methodologies → Rendering
dc.subjectNeural networks
dc.titleReal-time Neural Rendering of LiDAR Point Cloudsen_US
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
egs20251041.pdf
Size:
50.84 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
short1020_mm.mov
Size:
596.07 MB
Format:
Video Quicktime
No Thumbnail Available
Name:
short1020_supp.pdf
Size:
127.87 MB
Format:
Adobe Portable Document Format