A Contrastive Unified Encoding Framework for Sticker Style Editing

dc.contributor.authorNi, Zhihongen_US
dc.contributor.authorLi, Chengzeen_US
dc.contributor.authorLiu, Hanyuanen_US
dc.contributor.authorLiu, Xuetingen_US
dc.contributor.authorWong, Tien-Tsinen_US
dc.contributor.authorWen, Zhenkunen_US
dc.contributor.authorWu, Huisien_US
dc.contributor.editorChen, Renjieen_US
dc.contributor.editorRitschel, Tobiasen_US
dc.contributor.editorWhiting, Emilyen_US
dc.date.accessioned2024-10-13T18:04:50Z
dc.date.available2024-10-13T18:04:50Z
dc.date.issued2024
dc.description.abstractStickers are widely used in digital communication to enhance emotional and visual expressions. The conventional process of creating new sticker pack images involves time-consuming manual drawing, including meticulous color coordination and shading techniques for visual harmony. Learning the visual styles of distinct sticker packs would be critical to the overall process; however, existing solutions usually learn this style information within a limited number of style ''domains'', or per image. In this paper, we propose a contrastive learning framework that allows the style editing of an arbitrary sticker based on one or a number of style references with a continuous manifold to encapsulate all styles across sticker packs. The key to our approach is the encoding of styles into a unified latent space so that each sticker pack correlates with a unique style latent encoding. The contrastive loss ensures identical style latents within the same sticker pack, while distinct styles diverge. Through exposure to diverse sticker sets during training, our model crafts a consolidated continuous latent style space with strong expressive power, fostering seamless style transfer, interpolation, and mixing across sticker sets. Experiments show compelling style transfer results, with both qualitative and quantitative evaluations confirming the superiority of our method over existing approaches.en_US
dc.description.sectionheadersImage Synthesis
dc.description.seriesinformationPacific Graphics Conference Papers and Posters
dc.identifier.doi10.2312/pg.20241304
dc.identifier.isbn978-3-03868-250-9
dc.identifier.pages11 pages
dc.identifier.urihttps://doi.org/10.2312/pg.20241304
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/pg20241304
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Applied computing → Media arts
dc.subjectApplied computing → Media arts
dc.titleA Contrastive Unified Encoding Framework for Sticker Style Editingen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
pg20241304.pdf
Size:
7.35 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
paper1147_mm.pdf
Size:
11.45 MB
Format:
Adobe Portable Document Format