Path Guiding Using Spatio‐Directional Mixture Models

dc.contributor.authorDodik, Anaen_US
dc.contributor.authorPapas, Mariosen_US
dc.contributor.authorÖztireli, Cengizen_US
dc.contributor.authorMüller, Thomasen_US
dc.contributor.editorHauser, Helwig and Alliez, Pierreen_US
dc.date.accessioned2022-03-25T12:31:03Z
dc.date.available2022-03-25T12:31:03Z
dc.date.issued2022
dc.description.abstractWe propose a learning‐based method for light‐path construction in path tracing algorithms, which iteratively optimizes and samples from what we refer to as spatio‐directional Gaussian mixture models (SDMMs). In particular, we approximate incident radiance as an online‐trained 5D mixture that is accelerated by a D‐tree. Using the same framework, we approximate BSDFs as pre‐trained D mixtures, where is the number of BSDF parameters. Such an approach addresses two major challenges in path‐guiding models. First, the 5D radiance representation naturally captures correlation between the spatial and directional dimensions. Such correlations are present in, for example parallax and caustics. Second, by using a tangent‐space parameterization of Gaussians, our spatio‐directional mixtures can perform approximate product sampling with arbitrarily oriented BSDFs. Existing models are only able to do this by either foregoing anisotropy of the mixture components or by representing the radiance field in local (normal aligned) coordinates, which both make the radiance field more difficult to learn. An additional benefit of the tangent‐space parameterization is that each individual Gaussian is mapped to the solid sphere with low distortion near its centre of mass. Our method performs especially well on scenes with small, localized luminaires that induce high spatio‐directional correlation in the incident radiance.en_US
dc.description.number1
dc.description.sectionheadersMajor Revision from Eurographics Conference
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume41
dc.identifier.doi10.1111/cgf.14428
dc.identifier.issn1467-8659
dc.identifier.pages172-189
dc.identifier.urihttps://doi.org/10.1111/cgf.14428
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf14428
dc.publisher© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltden_US
dc.subjectMonte Carlo Techniques
dc.subjectMethods and Applications
dc.subjectGlobal Illumination
dc.subjectRendering
dc.subjectRay Tracing
dc.subjectRendering
dc.titlePath Guiding Using Spatio‐Directional Mixture Modelsen_US
Files
Collections