Sketch-Based Modeling of Parametric Shapes

dc.contributor.authorWailly, Bastienen_US
dc.contributor.authorBousseau, Adrienen_US
dc.contributor.editorBerio, Daniel and Cruz, Pedro and Echevarria, Joseen_US
dc.date.accessioned2019-05-20T09:53:22Z
dc.date.available2019-05-20T09:53:22Z
dc.date.issued2019
dc.description.abstractWe demonstrate a sketch-based modeling system running on a multi-touch pen tablet. Our system takes inspiration from the work of Nishida et al. [NGDGA*16], who proposed to use deep convolutional networks to interpret sketches of parametric shapes. While Nishida et al. applied this approach to the creation of procedural buildings, we focus on the creation of simple shapes (cuboids, cylinders, cones, spheres, pyramids) that users can assemble to create more complex objects. In this poster we describe the main components of our system - the deep convolutional networks used for sketch interpretation, the training data, the user interface, and the overall software architecture that combines these components. We will allow conference attendees to test our system on a pen tablet.en_US
dc.description.sectionheadersFancy Shapes
dc.description.seriesinformationACM/EG Expressive Symposium - Posters, Demos, and Artworks
dc.identifier.doi10.2312/exp.20191092
dc.identifier.isbn978-3-03868-084-0
dc.identifier.pages19-20
dc.identifier.urihttps://doi.org/10.2312/exp.20191092
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/exp20191092
dc.publisherThe Eurographics Associationen_US
dc.titleSketch-Based Modeling of Parametric Shapesen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
019-020.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
deep_sketch_demo.mp4
Size:
47.52 MB
Format:
Unknown data format