Local Poisson SPH For Viscous Incompressible Fluids

dc.contributor.authorHe, Xiaoweien_US
dc.contributor.authorLiu, Ningen_US
dc.contributor.authorLi, Shengen_US
dc.contributor.authorWang, Honganen_US
dc.contributor.authorWang, Guopingen_US
dc.contributor.editorHolly Rushmeier and Oliver Deussenen_US
dc.date.accessioned2015-02-28T08:11:19Z
dc.date.available2015-02-28T08:11:19Z
dc.date.issued2012en_US
dc.description.abstractEnforcing fluid incompressibility is one of the time‐consuming aspects in SPH. In this paper, we present a local Poisson SPH (LPSPH) method to solve incompressibility for particle based fluid simulation. Considering the pressure Poisson equation, we first convert it into an integral form, and then apply a discretization to convert the continuous integral equation to a discretized summation over all the particles in the local pressure integration domain determined by the local geometry. To control the approximation error, we further integrate our local pressure solver into the predictive‐corrective framework to avoid the computational cost of solving a pressure Poisson equation globally. Our method can effectively eliminate the large density deviations mainly caused by the solid boundary treatment and free surface topological change, and show advantage of a higher convergence rate over the predictive‐corrective incompressible SPH (PCISPH).Enforcing fluid incompressibility is one of the time‐consuming aspects in SPH. In this (paper, we present a local Poisson SPH (LPSPH) method to solve incompressibility for particle based fluid simulation. Considering the pressure Poisson equation, we first convert it into an integral form, and then apply a discretization to convert the continuous integral equation to a discretized summation over all the particles in the local pressure integration domain determined by the local geometry. To control the approximation error, we further integrate our local pressure solver into the predictive‐corrective framework to avoid the computational cost of solving a pressure Poisson equation globally. Our method can effectively eliminate the large density deviations mainly caused by the solid boundary treatment and free surface topological change, and show advantage of a higher convergence rate over the predictive‐corrective incompressible SPH (PCISPH).en_US
dc.description.number6
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume31
dc.identifier.doi10.1111/j.1467-8659.2012.03074.x
dc.identifier.issn1467-8659en_US
dc.identifier.urihttps://doi.org/10.1111/j.1467-8659.2012.03074.xen_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltd.en_US
dc.titleLocal Poisson SPH For Viscous Incompressible Fluidsen_US
Files
Collections