Feature Extraction and Classifier Combination for Image-based Sketch Recognition
Loading...
Date
2010
Journal Title
Journal ISSN
Volume Title
Publisher
The Eurographics Association
Abstract
Image-based approaches to sketch recognition typically cast sketch recognition as a machine learning problem. In systems that adopt image-based recognition, the collected ink is generally fed through a standard three stage pipeline consisting of the feature extraction, learning and classification steps. Although these approaches make regular use of machine learning, existing work falls short of presenting a proper treatment of important issues such as feature extraction, feature selection, feature combination, and classifier fusion. In this paper, we show that all these issues are significant factors, which substantially affect the ultimate performance of a sketch recognition engine. We support our case by experimental results obtained from two databases using representative sets of feature extraction, feature selection, classification, and classifier combination methods. We present the pros and cons of various choices that can be made while building sketch recognizers and discuss their trade-offs.
Description
@inproceedings{:10.2312/SBM/SBM10/063-070,
booktitle = {Eurographics Workshop on Sketch-Based Interfaces and Modeling},
editor = {Marc Alexa and Ellen Yi-Luen Do},
title = {{Feature Extraction and Classifier Combination for Image-based Sketch Recognition}},
author = {Tumen, R. Sinan and Acer, M. Emre and Sezgin, T. Metin},
year = {2010},
publisher = {The Eurographics Association},
ISSN = {1812-3503},
ISBN = {978-3-905674-25-5},
DOI = {/10.2312/SBM/SBM10/063-070}
}