ACT2G: Attention-based Contrastive Learning for Text-to-Gesture Generation

No Thumbnail Available
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
ACM Association for Computing Machinery
Abstract
Recent increase of remote-work, online meeting and tele-operation task makes people find that gesture for avatars and communication robots is more important than we have thought. It is one of the key factors to achieve smooth and natural communication between humans and AI systems and has been intensively researched. Current gesture generation methods are mostly based on deep neural network using text, audio and other information as the input, however, they generate gestures mainly based on audio, which is called a beat gesture. Although the ratio of the beat gesture is more than 70% of actual human gestures, content based gestures sometimes play an important role to make avatars more realistic and human-like. In this paper, we propose a attention-based contrastive learning for text-to-gesture (ACT2G), where generated gestures represent content of the text by estimating attention weight for each word from the input text. In the method, since text and gesture features calculated by the attention weight are mapped to the same latent space by contrastive learning, once text is given as input, the network outputs a feature vector which can be used to generate gestures related to the content. User study confirmed that the gestures generated by ACT2G were better than existing methods. In addition, it was demonstrated that wide variation of gestures were generated from the same text by changing attention weights by creators.
Description

CCS Concepts: Interaction?Multimodal Interaction; Human-Computer Interfaces gesture generation, multimodal interaction, contrastive learning"

        
@inproceedings{
10.1145:3606940
, booktitle = {
Proceedings of the ACM on Computer Graphics and Interactive Techniques
}, editor = {
Wang, Huamin
and
Ye, Yuting
and
Victor Zordan
}, title = {{
ACT2G: Attention-based Contrastive Learning for Text-to-Gesture Generation
}}, author = {
Teshima, Hitoshi
and
Wake, Naoki
and
Thomas, Diego
and
Nakashima, Yuta
and
Kawasaki, Hiroshi
and
Ikeuchi, Katsushi
}, year = {
2023
}, publisher = {
ACM Association for Computing Machinery
}, ISSN = {
2577-6193
}, ISBN = {}, DOI = {
10.1145/3606940
} }
Citation