Hinted Star Coordinates for Mixed Data

dc.contributor.authorMatute, J.en_US
dc.contributor.authorLinsen, L.en_US
dc.contributor.editorBenes, Bedrich and Hauser, Helwigen_US
dc.date.accessioned2020-05-22T12:24:40Z
dc.date.available2020-05-22T12:24:40Z
dc.date.issued2020
dc.description.abstractMixed data sets containing numerical and categorical attributes are nowadays ubiquitous. Converting them to one attribute type may lead to a loss of information. We present an approach for handling numerical and categorical attributes in a holistic view. For data sets with many attributes, dimensionality reduction (DR) methods can help to generate visual representations involving all attributes. While automatic DR for mixed data sets is possible using weighted combinations, the impact of each attribute on the resulting projection is difficult to measure. Interactive support allows the user to understand the impact of data dimensions in the formation of patterns. Star Coordinates is a well‐known interactive linear DR technique for multi‐dimensional numerical data sets. We propose to extend Star Coordinates and its initial configuration schemes to mixed data sets. In conjunction with analysing numerical attributes, our extension allows for exploring the impact of categorical dimensions and individual categories on the structure of the entire data set. The main challenge when interacting with Star Coordinates is typically to find a good configuration of the attribute axes. We propose a guided mixed data analysis based on maximizing projection quality measures by the use of recommended transformations, named hints, in order to find a proper configuration of the attribute axes.en_US
dc.description.number1
dc.description.sectionheadersArticles
dc.description.seriesinformationComputer Graphics Forum
dc.description.volume39
dc.identifier.doi10.1111/cgf.13666
dc.identifier.issn1467-8659
dc.identifier.pages117-133
dc.identifier.urihttps://doi.org/10.1111/cgf.13666
dc.identifier.urihttps://diglib.eg.org:443/handle/10.1111/cgf13666
dc.publisher© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltden_US
dc.subjectinformation visualization
dc.subjectvisual analytics
dc.titleHinted Star Coordinates for Mixed Dataen_US
Files
Collections