Shortest Circuits with Given Homotopy in a Constellation

dc.contributor.authorMichelucci, D.en_US
dc.contributor.authorNeveu, M.en_US
dc.contributor.editorGershon Elber and Nicholas Patrikalakis and Pere Bruneten_US
dc.date.accessioned2016-02-17T18:02:47Z
dc.date.available2016-02-17T18:02:47Z
dc.date.issued2004en_US
dc.description.abstractAbstract A polynomial method is described for computing the shortest circuit with a prescribed homotopy on a surface. The surface is not described by a mesh but by a constellation: a set of sampling points. Points close enough (their distance is less than a prescribed threshold) are linked with an edge: the induced graph is not a triangulation but still permits to compute homologic and homotopic properties. Advantages of constellations over meshes are their simplicity and robustness.en_US
dc.description.sectionheadersPosters Sessionen_US
dc.description.seriesinformationSolid Modelingen_US
dc.identifier.doi10.2312/sm.20041405en_US
dc.identifier.isbn3-905673-55-Xen_US
dc.identifier.issn1811-7783en_US
dc.identifier.pages297-302en_US
dc.identifier.urihttps://doi.org/10.2312/sm.20041405en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.titleShortest Circuits with Given Homotopy in a Constellationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
297-302_michelucci.pdf
Size:
514.93 KB
Format:
Adobe Portable Document Format