Lightweight Morphology-Aware Encoding for Motion Learning

dc.contributor.authorWu, Ziyuen_US
dc.contributor.authorMichel, Thomasen_US
dc.contributor.authorRohmer, Damienen_US
dc.contributor.editorCeylan, Duyguen_US
dc.contributor.editorLi, Tzu-Maoen_US
dc.date.accessioned2025-05-09T09:36:25Z
dc.date.available2025-05-09T09:36:25Z
dc.date.issued2025
dc.description.abstractWe present a lightweight method for encoding, learning, and predicting 3D rigged character motion sequences that consider both the character's pose and morphology. Specifically, we introduce an enhanced skeletal embedding that extends the standard skeletal representation by incorporating the radius of proxy cylinders, which conveys geometric information about the character's morphology at each joint. This additional geometric data is represented using compact tokens designed to work seamlessly with transformer architectures. This simple yet effective representation demonstrated through three distinct tokenization strategies, maintains the efficiency of skeletal-based representations while enhancing the accuracy of motion sequence predictions across diverse morphologies. Notably, our method achieves these results despite being trained on a limited dataset, showcasing its potential for applications with scarce animation data.en_US
dc.description.sectionheadersShort Paper 4
dc.description.seriesinformationEurographics 2025 - Short Papers
dc.identifier.doi10.2312/egs.20251048
dc.identifier.isbn978-3-03868-268-4
dc.identifier.issn1017-4656
dc.identifier.pages4 pages
dc.identifier.urihttps://doi.org/10.2312/egs.20251048
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/egs20251048
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Animation
dc.subjectComputing methodologies → Animation
dc.titleLightweight Morphology-Aware Encoding for Motion Learningen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
egs20251048.pdf
Size:
1.83 MB
Format:
Adobe Portable Document Format