COMAND: Controllable Action-aware Manifold for 3D Motion Synthesis

dc.contributor.authorHabibie, Ikhsanulen_US
dc.contributor.authorElgharib, Mohameden_US
dc.contributor.authorLuvizon, Diogoen_US
dc.contributor.authorThambiraja, Balamuruganen_US
dc.contributor.authorNyatsanga, Simbarasheen_US
dc.contributor.authorThies, Justusen_US
dc.contributor.authorNeff, Michaelen_US
dc.contributor.authorTheobalt, Christianen_US
dc.contributor.editorLinsen, Larsen_US
dc.contributor.editorThies, Justusen_US
dc.date.accessioned2024-09-09T05:27:12Z
dc.date.available2024-09-09T05:27:12Z
dc.date.issued2024
dc.description.abstractWe present COMAND, a novel method for controllable multi-action 3D motion synthesis without requiring action-labeled data. Our method can generate a lifelike motion sequence containing consecutive non-locomotive actions such as kicking, jumping, or squatting, without the need for manual blending, enabling an intuitive way to control 3D human animation based on the desired motion types at specified time windows. At the core of our method is a motion manifold based on a periodic parameterization of a motion latent space that allows for unsupervised action clustering of 3D motion, thus allowing action-to-motion synthesis without the need to explicitly train the model on action-labeled datasets. This learned motion manifold has semantic and periodic properties that benefit 3D motion synthesis from action labels and from free-form text input, resulting in a state-ofthe- art multi-modal and multi-action 3D motion generation framework. Our study shows that more than 83% and 96% of the users respectively rated COMAND as more natural and better matching the target action sequence when compared to existing methods.en_US
dc.description.sectionheadersAnimation and Simulation
dc.description.seriesinformationVision, Modeling, and Visualization
dc.identifier.doi10.2312/vmv.20241209
dc.identifier.isbn978-3-03868-247-9
dc.identifier.pages8 pages
dc.identifier.urihttps://doi.org/10.2312/vmv.20241209
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/vmv20241209
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Motion capture
dc.subjectComputing methodologies → Motion capture
dc.titleCOMAND: Controllable Action-aware Manifold for 3D Motion Synthesisen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
vmv20241209.pdf
Size:
8.56 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
paper1033_1.mp4
Size:
152.79 MB
Format:
Video MP4
Collections