Sampling of Anisotropic Spatial Gaussians for Path Guiding

dc.contributor.authorLelyakin, Sergeyen_US
dc.contributor.authorSchüßler, Vincenten_US
dc.contributor.authorDachsbacher, Carstenen_US
dc.contributor.editorGünther, Tobiasen_US
dc.contributor.editorMontazeri, Zahraen_US
dc.date.accessioned2025-05-09T09:31:07Z
dc.date.available2025-05-09T09:31:07Z
dc.date.issued2025
dc.description.abstractDirectional models in path guiding struggle with representing parallax effects or anisotropic features. Our model instead describes the spatial distribution of a target vertex using a 3D Gaussian mixture model. While this dispenses with the need for reprojection and allows to represent anisotropic features easily, its directional probability density is not readily available, since it involves a marginal integral. In this work, we derive an expression for the PDF of our model in solid angle measure that is practical to evaluate. We demonstrate how our model can improve guiding accuracy in various scenes.en_US
dc.description.sectionheadersPosters
dc.description.seriesinformationEurographics 2025 - Posters
dc.identifier.doi10.2312/egp.20251017
dc.identifier.isbn978-3-03868-269-1
dc.identifier.issn1017-4656
dc.identifier.pages2 pages
dc.identifier.urihttps://doi.org/10.2312/egp.20251017
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/egp20251017
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Rendering; Ray tracing
dc.subjectComputing methodologies → Rendering
dc.subjectRay tracing
dc.titleSampling of Anisotropic Spatial Gaussians for Path Guidingen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
egp20251017.pdf
Size:
14.15 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
poster1005_poster_pdf.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format