EuroVis13: Eurographics Conference on Visualization
Permanent URI for this collection
Browse
Browsing EuroVis13: Eurographics Conference on Visualization by Issue Date
Now showing 1 - 20 of 50
Results Per Page
Sort Options
Item A Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels(The Eurographics Association and Blackwell Publishing Ltd., 2013) Rosen, Paul; B. Preim, P. Rheingans, and H. TheiselWe present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant differences between the execution of the many blocks and warps. As interesting warps are identified, we allow further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel.Item ViviSection: Skeleton-based Volume Editing(The Eurographics Association and Blackwell Publishing Ltd., 2013) Karimov, Alexey; Mistelbauer, Gabriel; Schmidt, Johanna; Mindek, Peter; Schmidt, Elisabeth; Sharipov, Timur; Bruckner, Stefan; Gröller, Eduard; B. Preim, P. Rheingans, and H. TheiselVolume segmentation is important in many applications, particularly in the medical domain. Most segmentation techniques, however, work fully automatically only in very restricted scenarios and cumbersome manual editing of the results is a common task. In this paper, we introduce a novel approach for the editing of segmentation results. Our method exploits structural features of the segmented object to enable intuitive and robust correction and verification. We demonstrate that our new approach can significantly increase the segmentation quality even in difficult cases such as in the presence of severe pathologies.Item Spatially Efficient Design of Annotated Metro Maps(The Eurographics Association and Blackwell Publishing Ltd., 2013) Wu, Hsiang-Yun; Takahashi, Shigeo; Hirono, Daichi; Arikawa, Masatoshi; Lin, Chun-Cheng; Yen, Hsu-Chun; B. Preim, P. Rheingans, and H. TheiselAnnotating metro maps with thumbnail photographs is a commonly used technique for guiding travelers. However, conventional methods usually suffer from small labeling space around the metro stations, especially when they are interchange stations served by two or more metro lines. This paper presents an approach for aesthetically designing schematic metro maps while ensuring effective placement of large annotation labels that are sufficiently close to their corresponding stations. Our idea is to distribute such labels in a well-balanced manner to labeling regions around the metro network first and then adjust the lengths of metro line and leader line segments, which allows us to fully maximize the space coverage of the entire annotated map. This is accomplished by incorporating additional constraints into the conventional mixed-integer programming formulation, while we devised a three-step algorithm for accelerating the overall optimization process. We include several design examples to demonstrate the spatial efficiency of the map layout generated using the proposed approach through minimal user intervention.Item Vector Field k-Means: Clustering Trajectories by Fitting Multiple Vector Fields(The Eurographics Association and Blackwell Publishing Ltd., 2013) Ferreira, Nivan; Klosowski, James T.; Scheidegger, Carlos E.; Silva, Cláudio T.; B. Preim, P. Rheingans, and H. TheiselScientists study trajectory data to understand trends in movement patterns, such as human mobility for traffic analysis and urban planning. In this paper, we introduce a novel trajectory clustering technique whose central idea is to use vector fields to induce a notion of similarity between trajectories, letting the vector fields themselves define and represent each cluster. We present an efficient algorithm to find a locally optimal clustering of trajectories into vector fields, and demonstrate how vector-field k-means can find patterns missed by previous methods. We present experimental evidence of its effectiveness and efficiency using several datasets, including historical hurricane data, GPS tracks of people and vehicles, and anonymous cellular radio handoffs from a large service provider.Item Visualizing Interchange Patterns in Massive Movement Data(The Eurographics Association and Blackwell Publishing Ltd., 2013) Zeng, Wei; Fu, Chi-Wing; Arisona, Stefan Müller; Qu, Huamin; B. Preim, P. Rheingans, and H. TheiselMassive amount of movement data, such as daily trips made by millions of passengers in a city, are widely available nowadays. They are a highly valuable means not only for unveiling human mobility patterns, but also for assisting transportation planning, in particular for metropolises around the world. In this paper, we focus on a novel aspect of visualizing and analyzing massive movement data, i.e., the interchange pattern, aiming at revealing passenger redistribution in a traffic network. We first formulate a new model of circos figure, namely the interchange circos diagram, to present interchange patterns at a junction node in a bundled fashion, and optimize the color assignments to respect the connections within and between junction nodes. Based on this, we develop a family of visual analysis techniques to help users interactively study interchange patterns in a spatiotemporal manner: 1) multi-spatial scales: from network junctions such as train stations to people flow across and between larger spatial areas; and 2) temporal changes of patterns from different times of the day. Our techniques have been applied to real movement data consisting of hundred thousands of trips, and we present also two case studies on how transportation experts worked with our interface.Item Streamlines for Illustrative Real-Time Rendering(The Eurographics Association and Blackwell Publishing Ltd., 2013) Lawonn, Kai; Moench, Tobias; Preim, Bernhard; B. Preim, P. Rheingans, and H. TheiselLine drawing techniques are important methods to illustrate shapes. Existing feature line methods, e.g., suggestive contours, apparent ridges, or photic extremum lines, solely determine salient regions and illustrate them with separate lines. Hatching methods convey the shape by drawing a wealth of lines on the whole surface. Both approaches are often not sufficient for a faithful visualization of organic surface models, e.g., in biology or medicine. In this paper, we present a novel object-space line drawing algorithm that conveys the shape of such surface models in real-time. Our approach employs contour- and feature-based illustrative streamlines to convey surface shape (ConFIS). For every triangle, precise streamlines are calculated on the surface with a given curvature vector field. Salient regions are detected by determining maxima and minima of a scalar field. Compared with existing feature lines and hatching methods, ConFIS uses the advantages of both categories in an effective and flexible manner. We demonstrate this with different anatomical and artificial surface models. In addition, we conducted a qualitative evaluation of our technique to compare our results with exemplary feature line and hatching methods.Item Visual Explanation of the Complexity in Julia Sets(The Eurographics Association and Blackwell Publishing Ltd., 2013) Schrijvers, Okke; Wijk, Jarke J. van; B. Preim, P. Rheingans, and H. TheiselJulia sets based on quadratic polynomials have a very simple definition, yet a highly intricate shape. Our contribution is to provide a visual explanation for this complexity. To this end we show the construction of Julia sets as a dynamic process, in contrast to showing just a static image of the set itself. Our method is based on the Inverse Iteration Method (IIM). We start with a disk, which is successively distorted. The crucial step is to show an animation of the effect of taking a root of a subset of the complex plane. We present four different approaches for this, using a Riemann surface, a corkscrew, a fan, and disks as metaphors. We packaged our results in an interactive tool with a simple interface, such that everybody can view and inspect these for different Julia sets. The results are useful for teaching complex analysis, promoting mathematics, entertainment, and, above all, as a visual explanation for the complexity of Julia sets.Item Visual Analysis of Set Relations in a Graph(The Eurographics Association and Blackwell Publishing Ltd., 2013) Xu, Panpan; Du, Fan; Cao, Nan; Shi, Conglei; Zhou, Hong; Qu, Huamin; B. Preim, P. Rheingans, and H. TheiselMany applications can be modeled as a graph with additional attributes attached to the nodes. For example, a graph can be used to model the relationship of people in a social media website or a bibliographical dataset. Meanwhile, additional information is often available, such as the topics people are interested in and the music they listen to. Based on this additional information, different set relationships may exist among people. Revealing the set relationships in a network can help people gain social insight and better understand their roles within a community. In this paper, we present a visualization system for exploring set relations in a graph. Our system is designed to reveal three different relationships simultaneously: the social relationship of people, the set relationship among people's items of interest, and the similarity relationship of the items. We propose two novel visualization designs: a) a glyph-based visualization to reveal people's set relationships in the context of their social networks; b) an integration of visual links and a contour map to show people and their items of interest which are clustered into different groups. The effectiveness of the designs has been demonstrated by the case studies on two representative datasets including one from a social music service website and another from an academic collaboration network.Item Towards Multifield Scalar Topology Based on Pareto Optimality(The Eurographics Association and Blackwell Publishing Ltd., 2013) Huettenberger, Lars; Heine, Christian; Carr, Hamish; Scheuermann, Gerik; Garth, Christoph; B. Preim, P. Rheingans, and H. TheiselHow can the notion of topological structures for single scalar fields be extended to multifields? In this paper we propose a definition for such structures using the concepts of Pareto optimality and Pareto dominance. Given a set of piecewise-linear, scalar functions over a common simplical complex of any dimension, our method finds regions of ''consensus'' among single fields' critical points and their connectivity relations. We show that our concepts are useful to data analysis on real-world examples originating from fluid-flow simulations; in two cases where the consensus of multiple scalar vortex predictors is of interest and in another case where one predictor is studied under different simulation parameters. We also compare the properties of our approach with current alternatives.Item Preface and Table of Contents(The Eurographics Association and Blackwell Publishing Ltd., 2013) B. Preim, P. Rheingans, and H. TheiselItem Synthetic Brainbows(The Eurographics Association and Blackwell Publishing Ltd., 2013) Wan, Yong; Otsuna, Hideo; Hansen, Charles; B. Preim, P. Rheingans, and H. TheiselBrainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffling and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists.Item Complexity Plots(The Eurographics Association and Blackwell Publishing Ltd., 2013) Thiyagalingam, Jeyarajan; Walton, Simon; Duffy, Brian; Trefethen, Anne; Chen, Min; B. Preim, P. Rheingans, and H. TheiselIn this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and blackbox software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application.Item Evolutionary Visual Exploration: Evaluation With Expert Users(The Eurographics Association and Blackwell Publishing Ltd., 2013) Boukhelifa, Nadia; Cancino, Waldo; Bezerianos, Anastasia; Lutton, Evelyne; B. Preim, P. Rheingans, and H. TheiselWe present an Evolutionary Visual Exploration (EVE) system that combines visual analytics with stochastic optimisation to aid the exploration of multidimensional datasets characterised by a large number of possible views or projections. Starting from dimensions whose values are automatically calculated by a PCA, an interactive evolutionary algorithm progressively builds (or evolves) non-trivial viewpoints in the form of linear and non-linear dimension combinations, to help users discover new interesting views and relationships in their data. The criteria for evolving new dimensions is not known a priori and are partially specified by the user via an interactive interface: (i) The user selects views with meaningful or interesting visual patterns and provides a satisfaction score. (ii) The system calibrates a fitness function (optimised by the evolutionary algorithm) to take into account the user input, and then calculates new views. Our method leverages automatic tools to detect interesting visual features and human interpretation to derive meaning, validate the findings and guide the exploration without having to grasp advanced statistical concepts. To validate our method, we built a prototype tool (EvoGraphDice) as an extension of an existing scatterplot matrix inspection tool, and conducted an observational study with five domain experts. Our results show that EvoGraphDice can help users quantify qualitative hypotheses and try out different scenarios to dynamically transform their data. Importantly, it allowed our experts to think laterally, better formulate their research questions and build new hypotheses for further investigation.Item Progressive High-Quality Response Surfaces for Visually Guided Sensitivity Analysis(The Eurographics Association and Blackwell Publishing Ltd., 2013) Demir, Ismael; Westermann, Rüdiger; B. Preim, P. Rheingans, and H. TheiselIn this paper we present a technique which allows us to perform high quality and progressive response surface prediction from multidimensional input samples in an efficient manner. We utilize kriging interpolation to estimate a response surface which minimizes the expectation value and variance of the prediction error. High computational efficiency is achieved by employing parallel matrix and vector operations on the GPU. Our approach differs from previous kriging approaches in that it uses a novel progressive updating scheme for new samples based on blockwise matrix inversion. In this way we can handle very large sample sets to which new samples are continually added. Furthermore, we can monitor the incremental evolution of the surface, providing a means to early terminate the computation when no significant changes have occurred. When the generation of input samples is fast enough, our technique enables steering this generation process interactively to find relevant dependency relations.Item Vessel Visualization using Curvicircular Feature Aggregation(The Eurographics Association and Blackwell Publishing Ltd., 2013) Mistelbauer, Gabriel; Morar, Anca; Varchola, Andrej; Schernthaner, Rüdiger; Baclija, Ivan; Köchl, Arnold; Kanitsar, Armin; Bruckner, Stefan; Gröller, Eduard; B. Preim, P. Rheingans, and H. TheiselRadiological investigations are common medical practice for the diagnosis of peripheral vascular diseases. Existing visualization methods such as Curved Planar Reformation (CPR) depict calcifications on vessel walls to determine if blood is still able to flow. While it is possible with conventional CPR methods to examine the whole vessel lumen by rotating around the centerline of a vessel, we propose Curvicircular Feature Aggregation (CFA), which aggregates these rotated images into a single view. By eliminating the need for rotation, vessels can be investigated by inspecting only one image. This method can be used as a guidance and visual analysis tool for treatment planning. We present applications of this technique in the medical domain and give feedback from radiologists.Item Augmenting Visualization with Natural Language Translation of Interaction: A Usability Study(The Eurographics Association and Blackwell Publishing Ltd., 2013) Nafari, Maryam; Weaver, Chris; B. Preim, P. Rheingans, and H. TheiselAs visualization tools get more complicated, users often find it increasingly difficult to learn interaction sequences, recall past queries, and interpret visual states.We examine a query-to-question (Q2Q) supporting system that takes advantage of natural language generation (NLG) techniques to automatically translate and display query interactions as natural language questions. We focus on a symmetric pattern of multiple coordinated views, cross-filtered views, that involves only nominal/categorical data. We describe a study of the effects of pairing a visualization with a Q2Q interface on several aspects of usability. Q2Q produces considerable improvements in learnability, efficiency, and memorability of visualization in terms of speed and the length of interaction sequences that users follow, along with a modest decrease in error ratio. From a visual language perspective, we analyze how Q2Q speeds up users' comprehension of interaction, particularly when a visualization representation has deficiencies in illustrating hidden items or relationships.Item Visualizing Motional Correlations in Molecular Dynamics using Geometric Deformations(The Eurographics Association and Blackwell Publishing Ltd., 2013) Fioravante, Matthew; Shook, Adam; Thorpe, Ian; Rheingans, Penny; B. Preim, P. Rheingans, and H. TheiselIn macromolecules, an allosteric effect is said to occur when a change at one site of a molecule affects a distant site. Understanding these allosteric effects can be important for understanding how the functions of complex molecules such as proteins are regulated. One potential application of this knowledge is the development of small molecules that alter the function of proteins involved in diseases. Studying motional correlation can help researchers to discover how a change at a source site affects the target site and thus how allosteric ligands that could serve as drugs are able to exert their therapeutic effects. By improving our ability to analyze these correlated relationships, it may be possible to develop new medications to combat deadly diseases such as Hepatitis C. We present four visual techniques which represent motional correlation on rendered three-dimensional molecular models, providing new ways to view clusters of correlated residues and paths of allosteric interactions. These techniques give us a new way of investigating the presence of motional correlations in complex molecules. We compare each of these techniques to determine which are the most useful for representing motional correlations.Item HiFiVE: A Hilbert Space Embedding of Fiber Variability Estimates for Uncertainty Modeling and Visualization(The Eurographics Association and Blackwell Publishing Ltd., 2013) Schultz, Thomas; Schlaffke, Lara; Schölkopf, Bernhard; Schmidt-Wilcke, Tobias; B. Preim, P. Rheingans, and H. TheiselObtaining reproducible fiber direction estimates from diffusion MRI is crucial for successful fiber tracking. Modeling and visualizing the probability distribution of the inferred fiber directions is an important step in evaluating and comparing different acquisition schemes and fiber models. However, this distribution is usually strongly dominated by its main direction, which makes it difficult to examine when plotted naively. In this work, we propose a new visualization of the fiber probability distribution. It is based on embedding the probability measure into a particular reproducing kernel Hilbert space. This permits a decomposition into an embedded delta peak, representing the main direction, and a non-negative residual. They are then combined into a new glyph representation which visually enhances the residual, in order to highlight even subtle differences. Moreover, the magnitude of the delta peak component quantifies precision of the main fiber direction. We demonstrate that our new glyph provides a more detailed impression of the uncertainty than the current standard method, cones that contain 95% of the estimated directions. We use our new method to contribute to the validation of different ways of resampling the data (bootstrapping), and to visualize the differences between alternative acquisition schemes and models for high angular resolution diffusion imaging (HARDI).Item Evaluating Isosurfaces with Level-set-based Information Maps(The Eurographics Association and Blackwell Publishing Ltd., 2013) Wei, Tzu-Hsuan; Lee, Teng-Yok; Shen, Han-Wei; B. Preim, P. Rheingans, and H. TheiselWhile isosurfaces have been widely used for scalar data visualization, it is often difficult to determine if the selected isosurfaces for visualization are sufficient to represent the entire scalar field. In this paper, we present an information-theoretic approach to evaluate the representativeness of a given isosurface set. Our basic idea is that given two isosurfaces that enclose a subvolume, if the intermediate isosurfaces in the subvolume can be generated by smoothly morphing from one isosurface to the other, no additional isosurfaces are needed since the geometry of the true isosurfaces within the subvolume can be easily inferred. To realize this idea, given a pair of isosurfaces, to determine if such a smooth condition in the enclosed region is satisfied, we use a level-set approach to generate the intermediate surfaces. On each intermediate surface, we sample the values from the scalar field and exam the distribution. If the entropy of the distribution is low, this intermediate surface is aligned well with a true isosurface in the scalar field. For the intermediate surfaces generated by the level-set method from the boundary isosurfaces, the distributions of scalar values from the level-set surfaces form a 2D distribution, called isosurface information map. This information map can be used as an indicator of the representativeness of the boundary isosurfaces for the data in the subregion, allowing a quantitative measurement of information representable by the input isosurfaces. Based on this information-theoretic approach, this paper presents an isosurface selection algorithm that can automatically select isosurfaces for more effective visualization of scalar fields.Item VisRuption: Intuitive and Efficient Visualization of Temporal Airline Disruption Data(The Eurographics Association and Blackwell Publishing Ltd., 2013) Rosenthal, Paul; Pfeiffer, Linda; Müller, Nicholas H.; Ohler, Peter; B. Preim, P. Rheingans, and H. TheiselThe operation of an airline is a very complex task and disruptions to the planned operation can occur on very short notice. Already a small disruption like a delay of some minutes can cost the airline a tremendous amount of money. Hence, it is crucial to proactively control all operations of the airline and efficiently prioritize and handle disruptions. Due to the complex setting and the need for ad hoc decisions this task can only be carried out by human operation controllers. In the field of airline operations control there exists already a vast variety of different software in productive use. We analyze the different approaches from two of the market leaders and identify problematic design choices. We take into account this analysis and develop a set of rules for an intuitive visualization of airline disruption data. Finally, we introduce our tool for visualizing such data which complies to these rules. The visualization enables the user to gain a fast overview over the current problem situation and to intuitively prioritize different problems and problem hierarchies. The efficiency of the design is evaluated with the help of a user study which shows that the new system significantly outperforms the current state of the art.
- «
- 1 (current)
- 2
- 3
- »