36-Issue 3
Permanent URI for this collection
Browse
Browsing 36-Issue 3 by Issue Date
Now showing 1 - 20 of 47
Results Per Page
Sort Options
Item Constructing and Evaluating Visualisation Task Classifications: Process and Considerations(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kerracher, Natalie; Kennedy, Jessie; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeCategorising tasks is a common pursuit in the visualisation research community, with a wide variety of taxonomies, typologies, design spaces, and frameworks having been developed over the last three decades. While these classifications are universally purported to be useful in both the design and evaluation processes and in guiding future research, remarkably little attention has been paid to how these frameworks have-and can be-constructed and evaluated. In this paper we review the task classification literature and report on current practices in construction and evaluation. We consider the stages of task classification construction and identify the associated threats to validity arising at each stage and in response to the different methods employed. We provide guidance on suitable validation approaches in order to mitigate these threats. We also consider the appropriateness of evaluation strategies according to the different aspects of the classification which they evaluate. In so doing, we seek to provide guidance for developers of classifications in determining appropriate construction and evaluation strategies when developing a classification, and also for those selecting between competing classifications for use in the design and evaluation processes.Item Visualizing a Sequence of a Thousand Graphs (or Even More)(The Eurographics Association and John Wiley & Sons Ltd., 2017) Burch, Michael; Hlawatsch, Marcel; Weiskopf, Daniel; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeThe visualization of dynamic graphs demands visually encoding at least three major data dimensions: vertices, edges, and time steps. Many of the state-of-the-art techniques can show an overview of vertices and edges but lack a data-scalable visual representation of the time aspect. In this paper, we address the problem of displaying dynamic graphs with a thousand or more time steps. Our proposed interleaved parallel edge splatting technique uses a time-to-space mapping and shows the complete dynamic graph in a static visualization. It provides an overview of all data dimensions, allowing for visually detecting timevarying data patterns; hence, it serves as a starting point for further data exploration. By applying clustering and ordering techniques on the vertices, edge splatting on the links, and a dense time-to-space mapping, our approach becomes visually scalable in all three dynamic graph data dimensions. We illustrate the usefulness of our technique by applying it to call graphs and US domestic flight data with several hundred vertices, several thousand edges, and more than a thousand time steps.Item Cycle Plot Revisited: Multivariate Outlier Detection Using a Distance-Based Abstraction(The Eurographics Association and John Wiley & Sons Ltd., 2017) Bögl, Markus; Filzmoser, Peter; Gschwandtner, Theresia; Lammarsch, Tim; Leite, Roger A.; Miksch, Silvia; Rind, Alexander; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeThe cycle plot is an established and effective visualization technique for identifying and comprehending patterns in periodic time series, like trends and seasonal cycles. It also allows to visually identify and contextualize extreme values and outliers from a different perspective. Unfortunately, it is limited to univariate data. For multivariate time series, patterns that exist across several dimensions are much harder or impossible to explore. We propose a modified cycle plot using a distance-based abstraction (Mahalanobis distance) to reduce multiple dimensions to one overview dimension and retain a representation similar to the original. Utilizing this distance-based cycle plot in an interactive exploration environment, we enhance the Visual Analytics capacity of cycle plots for multivariate outlier detection. To enable interactive exploration and interpretation of outliers, we employ coordinated multiple views that juxtapose a distance-based cycle plot with Cleveland's original cycle plots of the underlying dimensions. With our approach it is possible to judge the outlyingness regarding the seasonal cycle in multivariate periodic time series.Item Uncertainty Footprint: Visualization of Nonuniform Behavior of Iterative Algorithms Applied to 4D Cell Tracking(The Eurographics Association and John Wiley & Sons Ltd., 2017) Wan, Yong; Hansen, Charles; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeResearch on microscopy data from developing biological samples usually requires tracking individual cells over time. When cells are three-dimensionally and densely packed in a time-dependent scan of volumes, tracking results can become unreliable and uncertain. Not only are cell segmentation results often inaccurate to start with, but it also lacks a simple method to evaluate the tracking outcome. Previous cell tracking methods have been validated against benchmark data from real scans or artificial data, whose ground truth results are established by manual work or simulation. However, the wide variety of real-world data makes an exhaustive validation impossible. Established cell tracking tools often fail on new data, whose issues are also difficult to diagnose with only manual examinations. Therefore, data-independent tracking evaluation methods are desired for an explosion of microscopy data with increasing scale and resolution. In this paper, we propose the uncertainty footprint, an uncertainty quantification and visualization technique that examines nonuniformity at local convergence for an iterative evaluation process on a spatial domain supported by partially overlapping bases. We demonstrate that the patterns revealed by the uncertainty footprint indicate data processing quality in two algorithms from a typical cell tracking workflow - cell identification and association. A detailed analysis of the patterns further allows us to diagnose issues and design methods for improvements. A 4D cell tracking workflow equipped with the uncertainty footprint is capable of self diagnosis and correction for a higher accuracy than previous methods whose evaluation is limited by manual examinations.Item Empirically Measuring Soft Knowledge in Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kijmongkolchai, Natchaya; Abdul-Rahman, Alfie; Chen, Min; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeIn this paper, we present an empirical study designed to evaluate the hypothesis that humans' soft knowledge can enhance the cost-benefit ratio of a visualization process by reducing the potential distortion. In particular, we focused on the impact of three classes of soft knowledge: (i) knowledge about application contexts, (ii) knowledge about the patterns to be observed (i.e., in relation to visualization task), and (iii) knowledge about statistical measures. We mapped these classes into three control variables, and used real-world time series data to construct stimuli. The results of the study confirmed the positive contribution of each class of knowledge towards the reduction of the potential distortion, while the knowledge about the patterns prevents distortion more effectively than the other two classes.Item Generating Tile Maps(The Eurographics Association and John Wiley & Sons Ltd., 2017) McNeill, Graham; Hale, Scott A.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeTile maps are an important tool in thematic cartography with distinct qualities (and limitations) that distinguish them from better-known techniques such as choropleths, cartograms and symbol maps. Specifically, tile maps display geographic regions as a grid of identical tiles so large regions do not dominate the viewer's attention and small regions are easily seen. Furthermore, complex data such as time series can be shown on each tile in a consistent format, and the grid layout facilitates comparisons across tiles. Whilst a small number of handcrafted tile maps have become popular, the time-consuming process of creating new tile maps limits their wider use. To address this issue, we present an algorithm that generates a tile map of the specified type (e.g. square, hexagon, triangle) from raw shape data. Since the 'best' tile map depends on the specific geography visualized and the task to be performed, the algorithm generates and ranks multiple tile maps and allows the user to choose the most appropriate. The approach is demonstrated on a range of examples using a prototype browser-based application.Item CoreFlow: Extracting and Visualizing Branching Patterns from Event Sequences(The Eurographics Association and John Wiley & Sons Ltd., 2017) Liu, Zhicheng; Kerr, Bernard; Dontcheva, Mira; Grover, Justin; Hoffman, Matthew; Wilson, Alan; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeEvent sequence datasets with high event cardinality and long sequences are difficult to visualize and analyze. In particular, it is hard to generate a high level visual summary of paths and volume of flow. Existing approaches of mining and visualizing frequent sequential patterns look promising, but have limitations in terms of scalability, interpretability and utility. We propose CoreFlow, a technique that automatically extracts and visualizes branching patterns in event sequences. CoreFlow constructs a tree by recursively applying a three-step procedure: rank events, divide sequences into groups, and trim sequences by the chosen event. The resulting tree contains key events as nodes, and links represent aggregated flows between key events. Based on CoreFlow, we have developed an interactive system for event sequence analysis. Our approach can compute branching patterns for millions of events in a few seconds, with improved interpretability of extracted patterns compared to previous work. We also present case studies of using the system in three different domains and discuss success and failure cases of applying CoreFlow to real-world analytic problems. These case studies call forth future research on metrics and models to evaluate the quality of visual summaries of event sequences.Item Measuring Symmetry in Drawings of Graphs(The Eurographics Association and John Wiley & Sons Ltd., 2017) Welch, Eric; Kobourov, Stephen; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeLayout symmetry is an important and desired feature in graph drawing. While there is a substantial body of work in computer vision around the detection and measurement of symmetry in images, there has been little effort to define and validate meaningful measures of the symmetry of graph drawings. In this paper, we evaluate two algorithms that have been proposed for measuring graph drawing symmetry, comparing their judgments to those of human subjects, and investigating the use of stress as an alternative measure of symmetry. We discuss advantages and disadvantages of these measures, possible ways to improve them, and implications for the design of algorithms that optimize the symmetry in the layout.Item Steering the Craft: UI Elements and Visualizations for Supporting Progressive Visual Analytics(The Eurographics Association and John Wiley & Sons Ltd., 2017) Badam, Sriram Karthik; Elmqvist, Niklas; Fekete, Jean-Daniel; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeProgressive visual analytics (PVA) has emerged in recent years to manage the latency of data analysis systems. When analysis is performed progressively, rough estimates of the results are generated quickly and are then improved over time. Analysts can therefore monitor the progression of the results, steer the analysis algorithms, and make early decisions if the estimates provide a convincing picture. In this article, we describe interface design guidelines for helping users understand progressively updating results and make early decisions based on progressive estimates. To illustrate our ideas, we present a prototype PVA tool called INSIGHTSFEED for exploring Twitter data at scale. As validation, we investigate the tradeoffs of our tool when exploring a Twitter dataset in a user study. We report the usage patterns in making early decisions using the user interface, guiding computational methods, and exploring different subsets of the dataset, compared to sequential analysis without progression.Item Interactive Regression Lens for Exploring Scatter Plots(The Eurographics Association and John Wiley & Sons Ltd., 2017) Shao, Lin; Mahajan, Aishwarya; Schreck, Tobias; Lehmann, Dirk J.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeData analysis often involves finding models that can explain patterns in data, and reduce possibly large data sets to more compact model-based representations. In Statistics, many methods are available to compute model information. Among others, regression models are widely used to explain data. However, regression analysis typically searches for the best model based on the global distribution of data. On the other hand, a data set may be partitioned into subsets, each requiring individual models. While automatic data subsetting methods exist, these often require parameters or domain knowledge to work with. We propose a system for visual-interactive regression analysis for scatter plot data, supporting both global and local regression modeling. We introduce a novel regression lens concept, allowing a user to interactively select a portion of data, on which regression analysis is run in interactive time. The lens gives encompassing visual feedback on the quality of candidate models as it is interactively navigated across the input data. While our regression lens can be used for fully interactive modeling, we also provide user guidance suggesting appropriate models and data subsets, by means of regression quality scores. We show, by means of use cases, that our regression lens is an effective tool for user-driven regression modeling and supports model understanding.Item An Empirical Study on the Reliability of Perceiving Correlation Indices using Scatterplots(The Eurographics Association and John Wiley & Sons Ltd., 2017) Sher, Varshita; Bemis, Karen G.; Liccardi, Ilaria; Chen, Min; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeScatterplots have been in use for about two centuries, primarily for observing the relationship between two variables and commonly for supporting correlation analysis. In this paper, we report an empirical study that examines how humans' perception of correlation using scatterplots relates to the Pearson's product-moment correlation coefficient (PPMCC) - a commonly used statistical measure of correlation. In particular, we study human participants' estimation of correlation under different conditions, e.g., different PPMCC values, different densities of data points, different levels of symmetry of data enclosures, and different patterns of data distribution. As the participants were instructed to estimate the PPMCC of each stimulus scatterplot, the difference between the estimated and actual PPMCC is referred to as an offset. The results of the study show that varying PPMCC values, symmetry of data enclosure, or data distribution does have an impact on the average offsets, while only large variations in density cause an impact that is statistically significant. This study indicates that humans' perception of correlation using scatterplots does not correlate with computed PPMCC in a consistent manner. The magnitude of offsets may be affected not only by the difference between individuals, but also by geometric features of data enclosures. It suggests that visualizing scatterplots does not provide adequate support to the task of retrieving their corresponding PPMCC indicators, while the underlying model of humans' perception of correlation using scatterplots ought to feature other variables in addition to PPMCC. The paper also includes a theoretical discussion on the cost-benefit of using scatterplots.Item EuroVis 2017: Frontmatter(Eurographics Association, 2017) Heer, Jeffrey; Ropinski, Timo; van Wijk, Jarke;Item Interactive Ambiguity Resolution of Named Entities in Fictional Literature(The Eurographics Association and John Wiley & Sons Ltd., 2017) Stoffel, Florian; Jentner, Wolfgang; Behrisch, Michael; Fuchs, Johannes; Keim, Daniel A.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeNamed entity recognition (NER) denotes the task to detect entities and their corresponding classes, such as person or location, in unstructured text data. For most applications, state of the art NER software is producing reasonable results. However, as a consequence of the methodological limitations and the well-known pitfalls when analyzing natural language data, the NER results are likely to contain ambiguities. In this paper, we present an interactive NER ambiguity resolution technique, which enables users to create (post-processing) rules for named entity recognition data based on the content and entity context of the analyzed documents. We specifically address the problem that in use-cases where ambiguities are problematic, such as the attribution of fictional characters with traits, it is often unfeasible to train models on custom data to improve state of the art NER software. We derive an iterative process model for improving NER results, show an interactive NER ambiguity resolution prototype, illustrate our approach with contemporary literature, and discuss our work and future research.Item Integrating Visual Analytics Support for Grounded Theory Practice in Qualitative Text Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2017) Chandrasegaran, Senthil; Badam, Sriram Karthik; Kisselburgh, Lorraine; Ramani, Karthik; Elmqvist, Niklas; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeWe present an argument for using visual analytics to aid Grounded Theory methodologies in qualitative data analysis. Grounded theory methods involve the inductive analysis of data to generate novel insights and theoretical constructs. Making sense of unstructured text data is uniquely suited for visual analytics. Using natural language processing techniques such as parts-ofspeech tagging, retrieving information content, and topic modeling, different parts of the data can be structured and semantically associated, and interactively explored, thereby providing conceptual depth to the guided discovery process. We review grounded theory methods and identify processes that can be enhanced through visual analytic techniques. Next, we develop an interface for qualitative text analysis, and evaluate our design with qualitative research practitioners who analyze texts with and without visual analytics support. The results of our study suggest how visual analytics can be incorporated into qualitative data analysis tools, and the analytic and interpretive benefits that can result.Item Graph Layouts by t-SNE(The Eurographics Association and John Wiley & Sons Ltd., 2017) Kruiger, J. F.; Rauber, Paulo E.; Martins, Rafael Messias; Kerren, Andreas; Kobourov, Stephen; Telea, Alexandru C.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeWe propose a new graph layout method based on a modification of the t-distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction technique. Although t-SNE is one of the best techniques for visualizing high-dimensional data as 2D scatterplots, t-SNE has not been used in the context of classical graph layout. We propose a new graph layout method, tsNET, based on representing a graph with a distance matrix, which together with a modified t-SNE cost function results in desirable layouts. We evaluate our method by a formal comparison with state-of-the-art methods, both visually and via established quality metrics on a comprehensive benchmark, containing real-world and synthetic graphs. As evidenced by the quality metrics and visual inspection, tsNET produces excellent layouts.Item Illustrative Visualization of Mesoscale Ocean Eddies(The Eurographics Association and John Wiley & Sons Ltd., 2017) Liu, Li; Silver, Deborah; Bemis, Karen; Kang, Dujuan; Curchitser, Enrique; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeFeature-based time-varying volume visualization is combined with illustrative visualization to tell the story of how mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of ocean eddies. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. Based on the computed metadata, several important geometric and physical properties of eddy are computed. Illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, are combined with the extracted volume features to explore eddy characteristics at different levels. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. The domain experts expressed a preference for our methods over existing tools.Item Compactly Supported Biorthogonal Wavelet Bases on the Body Centered Cubic Lattice(The Eurographics Association and John Wiley & Sons Ltd., 2017) Horacsek, Joshua J.; Alim, Usman R.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeIn this work, we present a family of compact, biorthogonal wavelet filter banks that are applicable to the Body Centered Cubic (BCC) lattice. While the BCC lattice has been shown to have superior approximation properties for volumetric data when compared to the Cartesian Cubic (CC) lattice, there has been little work in the way of designing wavelet filter banks that respect the geometry of the BCC lattice. Since wavelets have applications in signal de-noising, compression, and sparse signal reconstruction, these filter banks are an important tool that addresses some of the scalability concerns presented by the BCC lattice. We use these filters in the context of volumetric data compression and reconstruction and qualitatively evaluate our results by rendering images of isosurfaces from compressed data.Item Visual Verification of Cancer Staging for Therapy Decision Support(The Eurographics Association and John Wiley & Sons Ltd., 2017) Cypko, Mario A.; Wojdziak, Jan; Stoehr, Matthaeus; Kirchner, Bettina; Preim, Bernhard; Dietz, Andreas; Lemke, Heinz U.; Oeltze-Jafra, Steffen; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeIt is generally accepted practice that each cancer patient case should be discussed in a clinical expert meeting, the so-called tumor board. A central role in finding the best therapy options for patients with solid tumors plays the Tumor, lymph Node, and Metastasis staging (TNM staging). Correctness of TNM staging has a significant impact on the therapy choice and hence on the patient's post-therapeutic quality of life or even survival. If inconsistencies in the TNM staging occur, possible explanations and solutions must be found based on the complex patient records, which takes the costly time of (multiple) physicians. We propose a more efficient visual analysis component, which supports a physician in verifying the given TNM staging before forwarding it to the tumor board. Our component comprises a Bayesian network model of the TNM staging process. Using information from the patient records and Bayesian inference, the models computes a patient-specific TNM staging, which is then explored and compared to the given staging by means of a graph-based visualization. Our component is implemented in a research prototype that supports an understanding of the model computations, allows for a fast identification of important influencing factors, and facilitates a quick detection of differences between two TNM stagings. We evaluated our component with five physicians, each studying 20 cases of laryngeal cancer.Item Visual Exploration of Global Trade Networks with Time-Dependent and Weighted Hierarchical Edge Bundles on GPU(The Eurographics Association and John Wiley & Sons Ltd., 2017) Hofmann, Johannes; Größler, Michael; Rubio-Sánchez, Manuel; Pichler, Peter-Paul; Lehmann, Dirk J.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeThe UN Comtrade database is the world's largest repository of bilateral trade data. Their complexity poses a challenge to visualization systems, leading to issues such as scalability and visual clutter. Thus, we propose a radial layout-based visual exploration system to enable the user to smoothly explore the change over time and to explore different commodity classes at once by using a novel edge bundling concept. We evaluated our system with the aid of a group of domain experts.Item Adaptable Radial Axes Plots for Improved Multivariate Data Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2017) Rubio-Sánchez, Manuel; Sanchez, Alberto; Lehmann, Dirk J.; Heer, Jeffrey and Ropinski, Timo and van Wijk, JarkeRadial axes plots are multivariate visualization techniques that extend scatterplots in order to represent high-dimensional data as points on an observable display. Well-known methods include star coordinates or principal component biplots, which represent data attributes as vectors that de ne axes, and produce linear dimensionality reduction mappings. In this paper we propose a hybrid approach that bridges the gap between star coordinates and principal component biplots, which we denominate adaptable radial axes plots . It is based on solving convex optimization problems where users can: (a) update the axis vectors interactively, as in star coordinates, while producing mappings that enable to estimate attribute values optimally through labeled axes, similarly to principal component biplots; (b) use different norms in order to explore additional nonlinear mappings of the data; and (c) include weights and constraints in the optimization problems for sorting the data along one axis. The result is a exible technique that complements, extends, and enhances current radial methods for data analysis.
- «
- 1 (current)
- 2
- 3
- »