Issue 3
Permanent URI for this collection
Browse
Browsing Issue 3 by Issue Date
Now showing 1 - 20 of 46
Results Per Page
Sort Options
Item Efficient Fitting and Rendering of Large Scattered Data Sets Using Subdivision Surfaces(Blackwell Publishers, Inc and the Eurographics Association, 2002) Scheib, Vincent; Haber, Jorg; Lin, Ming C.; Seidel, Hans-PeterWe present a method to efficiently construct and render a smooth surface for approximation of large functional scattered data. Using a subdivision surface framework and techniques from terrain rendering, the resulting surface can be explored from any viewpoint while maintaining high surface fairness and interactive frame rates. We show the approximation error to be sufficiently small for several large data sets. Our system allows for adaptive simplification and provides continuous levels of detail, taking into account the local variation and distribution of the data.Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Approximation]: Approximation of surfaces, Least squares approximation, Piecewise polynomial approximation; I.3.3 [Picture/Image Generation]: Display algorithms, Viewing algorithms; I.3.5 [Computational Geometry and Object Modeling]: Surface representation.Item Texture Particles(Blackwell Publishers, Inc and the Eurographics Association, 2002) Dischler, J.-M.; Maritaud, K.; Levy, B.; Ghazanfarpour, D.This paper presents an analytical extension of texture synthesis techniques based on the distribution of elementary texture components. Our approach is similar to the bombing, cellular, macrostructured and lapped textures techniques, but provides the user with more control on both the texture analysis and synthesis phases. Therefore, high quality results can be obtained for a large number of structured or stochastic textures (bricks, marble, lawn, etc.). The analysis consists in decomposing textures into elementary components - that we call 'texture particles' - and for which we analyze their specific spatial arrangements. The synthesis then consists in recomposing similar textures directly on arbitrary surfaces by taking into account the previously computed arrangements, extended to 3D surfaces. Compared to 'pixel-based' analysis and synthesis methods, which have been recently generalized to arbitrary surfaces, our approach has three major advantages: (1) it is fast, which allows the user to interactively control the synthesis process. This further allows us to propose a large number of tools, granting a high degree of artistic freedom to the user. (2) It avoids the visual deterioration of the texture components by preserving their shapes as well as their spatial arrangements. (3) The texture particles can be not only images, but also 3D geometric elements, which extends significantly the domain of application.Item Real-time Animation of Dressed Virtual Humans(Blackwell Publishers, Inc and the Eurographics Association, 2002) Cordier, Frederic; Magnenat-Thalmann, NadiaIn this paper, we describe a method for cloth animation in real-time. The algorithm works in a hybrid manner exploiting the merits of both the physical-based and geometric deformations. It makes use of predetermined conditions between the cloth and the body model, avoiding complex collision detection and physical deformations wherever possible. Garments are segmented into pieces that are simulated by various algorithms, depending on how they are laid on the body surface and whether they stick or flow on it. Tests show that the method is well suited to fully dressed virtual human models, achieving real-time performance compared to ordinary cloth-simulations.Item Interactive Visualization with Programmable Graphics Hardware(Blackwell Publishers, Inc and the Eurographics Association, 2002) Ertl, ThomasOne of the main scientific goals of visualization is the development of algorithms and appropriate data models which facilitate interactive visual analysis and direct manipulation of the increasingly large data sets which result from simulations running on massive parallel computer systems, from measurements employing fast high-resolution sensors, or from large databases and hierarchical information spaces.This task can only be achieved with the optimization of all stages of the visualization pipeline: filtering, compression, and feature extraction of the raw data sets, adaptive visualization mappings which allow the users to choose between speed and accuracy, and exploiting new graphics hardware features for fast and high-quality rendering. The recent introduction of advanced programmability in widely available graphics hardware has already led to impressive progress in the area of volume visualization. However, besides the acceleration of the final rendering, flexible graphics hardware is increasingly being used also for the mapping and filtering stages of the visualization pipeline, thus giving rise to new levels of interactivity in visualization applications. The talk will present recent results of applying programmable graphics hardware in various visualization algorithms covering volume data, flow data, terrains, NPR rendering, and distributed and remote applications.Item Using Perceptual Texture Masking for Efficient Image Synthesis(Blackwell Publishers, Inc and the Eurographics Association, 2002) Walter, Bruce; Pattanaik, Sumanta N.; Greenberg, Donald P.Texture mapping has become indispensable in image synthesis as an inexpensive source of rich visual detail. Less obvious, but just as useful, is its ability to mask image errors due to inaccuracies in geometry or lighting. This ability can be used to substantially accelerate rendering by eliminating computations when the resulting errors will be perceptually insignificant.Our new method precomputes the masking ability of textures using aspects of the JPEG image compression standard. This extra information is stored as threshold elevation factors in the texture's mip-map and interpolated at image generation time as part of the normal texture lookup process. Any algorithm which uses error tolerances or visibility thresholds can then take advantage of texture masking. Applications to adaptive shadow testing, irradiance caching, and path tracing are demonstrated.Unlike prior methods, our approach does not require that initial images be computed before masking can be exploited and incurs only negligible runtime computational overhead. Thus, it is much easier to integrate with existing rendering systems for both static and dynamic scenes and yields computational savings even when only small amounts of texture masking are present.Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadowing, and textureItem Modeling Surperspective Projection of Landscapes for Geographical Guide-Map Generation(Blackwell Science Ltd and the Eurographics Association, 2002) Takahashi, Shigeo; Ohta, Naoya; Nakamura, Hiroko; Takeshima, Yuriko; Fujishiro, IsseiIt is still challenging to generate hand-drawn pictures because they differ from ordinary photographs in that they are often drawn as seen from multiple viewpoints. This paper presents a new approach for modeling such surperspective projection based on shape deformation techniques. Specifically, surperspective landscape images for guide-maps are generated from 3D geographical elevation data. Our method first partitions a target geographical surface into feature areas to provide designers with landmarks suitable for editing. The system takes as input 2D visual effects, which are converted to 3D geometric constraints for geographical surface deformation. Using ordinary perspective projection, the deformed shape is then transformed into a target guide-map image where each landmark enjoys its own vista points. An algorithm for calculating such 2D visual effects semi-automatically from the geographical shape features is also considered.Item Hardware Accelerated Interactive Vector Field Visualization: A level of detail approach(Blackwell Publishers, Inc and the Eurographics Association, 2002) Bordoloi, Udeepta; Shen, Han-WeiThis paper presents an interactive global visualization technique for dense vector fields using levels of detail. We introduce a novel scheme which combines an error-controlled hierarchical approach and hardware acceleration to produce high resolution visualizations at interactive rates. Users can control the trade-off between computation time and image quality, producing visualizations amenable for situations ranging from high frame-rate previewing to accurate analysis. Use of hardware texture mapping allows the user to interactively zoom in and explore the data, and also to configure various texture parameters to change the look and feel of the visualization. We are able to achieve sub-second rates for dense LIC-like visualizations with resolutions in the order of a million pixels for data of similar dimensions.Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: ApplicationsItem Deferred, Self-Organizing BSP Trees(Blackwell Publishers, Inc and the Eurographics Association, 2002) Ar, Sigal; Montag, Gil; Tal, Ayelletbsptrees and KD trees are fundamental data structures for collision detection in walkthrough environments. A basic issue in the construction of these hierarchical data structures is the choice of cutting planes. Rather than base these choices solely on the properties of the scene, we propose using information about how the tree is used in order to determine its structure. We demonstrate how this leads to the creation ofbsptrees that are small, do not require much preprocessing time, and respond very efficiently to sequences of collision queries.Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling I.3.6 [Computer Graphics]: Graphics data structures and data types, Interaction techniques I.3.7 [Computer Graphics]: Virtual realityItem Advanced Radiance Estimation For Photon Map Global Illumination(Blackwell Publishers, Inc and the Eurographics Association, 2002) Hey, Heinrich; Purgathofer, WernerWe present a new method to compute radiance in photon map based global illumination simulation for polygonal scenes with general bidirectional scattering distribution functions (BSDFs). Our new radiance estimation uses the actual geometry in the neighborhood of the illuminated point, and does not assume that the nearest neighbor photons lie in the same plane as the point, nor that they are distributed in a circular area around that point. This allows us to achieve accurate indirect illumination by direct visualization of the photon map - which is especially important for the simulation of caustics(LS+DS*Epaths) - even in the vicinity of edges and corners of objects, and on surfaces with differently oriented small geometric details.Item Projective Texture Mapping with Full Panorama(Blackwell Publishers, Inc and the Eurographics Association, 2002) Kim, Dongho; Hahn, James K.Projective texture mapping is used to project a texture map onto scene geometry. It has been used in many applications, since it eliminates the assignment of fixed texture coordinates and provides a good method of representing synthetic images or photographs in image-based rendering. But conventional projective texture mapping has limitations in the field of view and the degree of navigation because only simple rectangular texture maps can be used.In this work, we propose the concept of panoramic projective texture mapping (PPTM). It projects cubic or cylindrical panorama onto the scene geometry. With this scheme, any polygonal geometry can receive the projection of a panoramic texture map, without using fixed texture coordinates or modeling many projective texture mapping. For fast real-time rendering, a hardware-based rendering method is also presented. Applications of PPTM include panorama viewer similar to QuicktimeVR and navigation in the panoramic scene, which can be created by image-based modeling techniques.Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing Algorithms; I.3.7 [Computer Graphics]: Color, Shading, Shadowing, and TextureItem Color Section(Blackwell Publishers Ltd and the Eurographics Association., 2002)Item Automatic Integration of Facade Textures into 3D Building Models with a Projective Geometry Based Line Clustering(Blackwell Publishers, Inc and the Eurographics Association, 2002) Lee, Sung Chun; Jung, Soon Ki; Nevatia, RamVisualization of city scenes is important for many applications including entertainment and urban mission planning. Models covering wide areas can be efficiently constructed from aerial images. However, only roof details are visible from aerial views; ground views are needed to provide details of the building facades for high quality 'fly-through' visualization or simulation applications. We present an automatic method of integrating facade textures from ground view images into 3D building models for urban site modeling. We first segment the input image into building facade regions using a hybrid feature extraction method, which combines global feature extraction with Hough transform on an adaptively tessellated Gaussian Sphere and local region segmentation. We estimate the external camera parameters by using the corner points of the extracted facade regions to integrate the facade textures into the 3D building models. We validate our approach with a set of experiments on some urban sites.Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Modeling packagesItem STRANDS: Interactive Simulation of Thin Solids using Cosserat Models(Blackwell Publishers, Inc and the Eurographics Association, 2002) Pai, Dinesh K.Strandsare thin elastic solids that are visually well approximated as smooth curves, and yet possess essential physical behaviors characteristic of solid objects such as twisting. Common examples in computer graphics include: sutures, catheters, and tendons in surgical simulation; hairs, ropes, and vegetation in animation. Physical models based on spring meshes or 3D finite elements for such thin solids are either inaccurate or inefficient for interactive simulation. In this paper we show that models based on the Cosserat theory of elastic rods are very well suited for interactive simulation of these objects. The physical model reduces to a system of spatial ordinary differential equations that can be solved efficiently for typical boundary conditions. The model handles the important geometric non-linearity due to large changes in shape. We introduce Cosserat-type physical models, describe efficient numerical methods for interactive simulation of these models, and implementation results.Item Hybrid Geometric - Image Based Rendering(Blackwell Publishers, Inc and the Eurographics Association, 2002) Hidalgo, Eduardo; Hubbold, Roger J.We present a Hybrid Geometric-Image Based Rendering (HGIBR) system for displaying very complex geometrical models at interactive frame rates. Our approach replaces distant geometry with a combination of image-based representations and geometry, while rendering nearby objects from geometry. Reference images are computed on demand, which means that no pre-processing, or additional storage are necessary. We present results for a massive model of a whole offshore gas platform, to demonstrate that interactive frame rates can be maintained using the HGIBR approach. Our implementation runs on a pair of PCs, using commodity graphics hardware for fast 3D warping.Item Space-Optimized Texture Maps(Blackwell Publishers, Inc and the Eurographics Association, 2002) Balmelli, Laurent; Taubin, Gabriel; Bernardini, FaustoTexture mapping is a common operation to increase the realism of three-dimensional meshes at low cost. We propose a new texture optimization algorithm based on the reduction of the physical space allotted to the texture image. Our algorithm optimizes the use of texture space by computing a warping function for the image and new texture coordinates. Neither the mesh geometry nor its connectivity are modified by the optimization. Our method uniformly distributes frequency content of the image in the spatial domain. In other words, the image is stretched in high frequency areas, whereas low frequency regions are shrunk. We also take into account distortions introduced by the mapping onto the model geometry in this process. The resulting image can be resampled at lower rate while preserving its original details. The unwarping is performed by the texture mapping function. Hence, the space-optimized texture is stored as-is in texture memory and is fully supported by current graphics hardware. We present several examples showing that our method significantly decreases texture memory usage without noticeable loss in visual quality.Item Artificial Animals and Humans: From Physics to Intelligence(Blackwell Publishers, Inc and the Eurographics Association, 2002) Terzopoulos, DemetriThe confluence of virtual reality and artificial life, an emerging discipline that spans the computational and biological sciences, has yielded synthetic worlds inhabited by realistic, artificial flora and fauna. Artificial animals are complex synthetic organisms that possess functional biomechanical bodies, sensors, and brains with locomotion, perception, behavior, learning, and cognition centers. Artificial humans and other animals are of interest in computer graphics because they are self-animating characters that dramatically advance the state of the art of production animation and interactive game technologies. More broadly, these biomimetic autonomous agents in their realistic virtual worlds also foster deeper, computationally oriented insights into natural living systems.Item Geometric Snakes for Triangular Meshes(Blackwell Publishers, Inc and the Eurographics Association, 2002) Lee, Y.; Lee, S.Feature detection is important in various mesh processing techniques, such as mesh editing, mesh morphing, mesh compression, and mesh signal processing. In spite of much research in computer vision, automatic feature detection even for images still remains a difficult problem. To avoid this difficulty, semi-automatic or interactive techniques for image feature detection have been investigated. In this paper, we propose a geometric snake as an interactive tool for feature detection on a 3D triangular mesh. A geometric snake is an extension of an image snake, which is an active contour model that slithers from its initial position specified by the user to a nearby feature while minimizing an energy functional. To constrain the movement of a geometric snake onto the surface of a mesh, we use the parameterization of the surrounding region of a geometric snake. Although the definition of a feature may vary among applications, we use the normal changes of faces to detect features on a mesh. Experimental results demonstrate that geometric snakes can successfully capture nearby features from user-specified initial positions.Item A Biologically-Parameterized Feather Model(Blackwell Publishers, Inc and the Eurographics Association, 2002) Streit, L.; Heidrich, W.Feathers, unlike other cutaneous appendages such as hair, fur, or scales have a definite structure. Variation in feather structure creates a wide range of resulting appearances. Collectively, feather structure determines the appearance of the feather coat, which can largely affect the resulting look of a feathered object (bird). In this paper we define the structure of individual feathers using a parameterization based on biological structure and substructures of actual feathers. We show that our parameterization can generate a large variety of feathers at multiple levels of detail and provide an initial step to semi-automatically generating a wide range of feather coats. his is achieved by specifying an intuitive interpolation between different structures and ages of feathers.Item Multi-Resolution Rendering of Complex Animated Scenes(Blackwell Publishers, Inc and the Eurographics Association, 2002) Wand, M.; Strasser, W.We present a novel multi-resolution point sample rendering algorithm for keyframe animations. The algorithm accepts triangle meshes of arbitrary topology as input which are animated by specifying different sets of vertices at keyframe positions. A multi-resolution representation consisting of prefiltered point samples and triangles is built to represent the animated mesh at different levels of detail. We introduce a novel sampling and stratification algorithm to efficiently generate suitable point sample sets for moving triangle meshes. Experimental results demonstrate that the new data structure can be used to render highly complex keyframe animations like crowd scenes in real-time.Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture / Image Generation - Display Algorithms; I.3.6 [Computer Graphics]: Methodology and Techniques - Graphics data structures and data types; G.3 [Mathematics of Computing]: Probability and Statistics - Probabilistic algorithms.Item Angle-Analyzer: A Triangle-Quad Mesh Codec(Blackwell Publishers, Inc and the Eurographics Association, 2002) Lee, Haeyoung; Alliez, Pierre; Desbrun, Mathieu