X-ray simulations with gVirtualXray in medicine and life sciences

dc.contributor.authorVidal, Franck P.en_US
dc.contributor.authorAfshari, Shaghayeghen_US
dc.contributor.authorAlbiol, Albertoen_US
dc.contributor.authorAlbiol, Franciscoen_US
dc.contributor.authorBellot, Alberto Corbíen_US
dc.contributor.authorBrun, Anna Louiseen_US
dc.contributor.authorChou, Chengy-Yingen_US
dc.contributor.authorDesbarats, Pascalen_US
dc.contributor.authorGarcía, Marcosen_US
dc.contributor.authorGiovannelli, Jean-Francoisen_US
dc.contributor.authorHatton, Clémentineen_US
dc.contributor.authorHenry, Audreyen_US
dc.contributor.authorKelly, Grahamen_US
dc.contributor.authorMichelet, Claireen_US
dc.contributor.authorMihail, Radu P.en_US
dc.contributor.authorRacy, Maleken_US
dc.contributor.authorRouwane, Alien_US
dc.contributor.authorSeznec, Herveen_US
dc.contributor.authorSújar, Aarónen_US
dc.contributor.authorTugwell-Allsup, Jennaen_US
dc.contributor.authorVillard, Pierre-Frédéricen_US
dc.contributor.editorMeuschke, Moniqueen_US
dc.contributor.editorKuhlen, Torsten W.en_US
dc.date.accessioned2025-05-26T06:32:48Z
dc.date.available2025-05-26T06:32:48Z
dc.date.issued2025
dc.description.abstractgVirtualXray (gVXR) is a programming interface framework to simulate realistic X-ray projections in realtime on graphics processing units (GPUs). It solves the Beer-Lambert law (attenuation law) using a deterministic X-ray simulation algorithm based on 3D computer graphics, namely rasterisation. Implemented as multi-pass rendering makes it more computationally optimal than the ray-tracing technique, which is a brute-force and straightforward approach to simulate X-ray images. Although written in C++ using OpenGL and its shading language (GLSL) to leverage the GPU, gVXR is available for other programming languages such as Python. Extensive validation studies, including comparisons with Monte Carlo simulations and real experimental data, have confirmed the accuracy of gVXR's simulations. gVXR was initially used in medical virtual reality (VR) for training purposes. It was then used in medical physics, and high-throughput data applications including mathematical optimisation and machine learning (ML). Micro-imaging studies on the C. elegans biological model are also reported.en_US
dc.description.sectionheaders3rd Prize
dc.description.seriesinformationEuroVis 2025 - Dirk Bartz Prize
dc.identifier.doi10.2312/evm.20251974
dc.identifier.isbn978-3-03868-281-3
dc.identifier.pages5 pages
dc.identifier.urihttps://doi.org/10.2312/evm.20251974
dc.identifier.urihttps://diglib.eg.org/handle/10.2312/evm20251974
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies → Real-time simulation; Physical simulation; Virtual reality; Machine learning; Applied computing → Physics
dc.subjectComputing methodologies → Real
dc.subjecttime simulation
dc.subjectPhysical simulation
dc.subjectVirtual reality
dc.subjectMachine learning
dc.subjectApplied computing → Physics
dc.titleX-ray simulations with gVirtualXray in medicine and life sciencesen_US
Files
Original bundle
Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
evm20251974.pdf
Size:
4.32 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
1013-file-i10.mp4
Size:
49.4 MB
Format:
Video MP4
Loading...
Thumbnail Image
Name:
1013-file-i7.png
Size:
584.24 KB
Format:
Portable Network Graphics
No Thumbnail Available
Name:
1013-file-i8.mp4
Size:
48.12 MB
Format:
Video MP4