Browsing by Author "Boubekeur, Tamy"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
Item Connectivity-preserving Smooth Surface Filling with Sharp Features(The Eurographics Association, 2019) Lescoat, Thibault; Memari, Pooran; Thiery, Jean-Marc; Ovsjanikov, Maks; Boubekeur, Tamy; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonWe present a method for constructing a surface mesh filling gaps between the boundaries of multiple disconnected input components. Unlike previous works, our method pays special attention to preserving both the connectivity and large-scale geometric features of input parts, while maintaining efficiency and scalability w.r.t. mesh complexity. Starting from an implicit surface reconstruction matching the parts' boundaries, we first introduce a modified dual contouring algorithm which stitches a meshed contour to the input components while preserving their connectivity. We then show how to deform the reconstructed mesh to respect the boundary geometry and preserve sharp feature lines, smoothly blending them when necessary. As a result, our reconstructed surface is smooth and propagates the feature lines of the input. We demonstrate on a wide variety of input shapes that our method is scalable to large input complexity and results in superior mesh quality compared to existing techniques.Item Eurographics Symposium on Rendering 2019 - CGF38-4: Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2019) Boubekeur, Tamy; Sen, Pradeep; Boubekeur, Tamy and Sen, PradeepItem Eurographics Symposium on Rendering 2019 – DL-only / Industry Track: Frontmatter(Eurographics Association, 2019) Boubekeur, Tamy; Sen, Pradeep; Boubekeur, Tamy and Sen, PradeepItem Fiblets for Real-Time Rendering of Massive Brain Tractograms(The Eurographics Association and John Wiley & Sons Ltd., 2022) Schertzer, Jérémie; Mercier, Corentin; Rousseau, Sylvain; Boubekeur, Tamy; Chaine, Raphaëlle; Kim, Min H.We present a method to render massive brain tractograms in real time. Tractograms model the white matter architecture of the human brain using millions of 3D polylines (fibers), summing up to billions of segments. They are used by neurosurgeons before surgery as well as by researchers to better understand the brain. A typical raw dataset for a single brain represents dozens of gigabytes of data, preventing their interactive rendering.We address this challenge with a new GPU mesh shader pipeline based on a decomposition of the fiber set into compressed local representations that we call fiblets. Their spatial coherence is used at runtime to efficiently cull hidden geometry at the task shader stage while synthesizing the visible ones as polyline meshlets in a warp-scale parallel fashion at the mesh shader stage. As a result, our pipeline can feed a standard deferred shading engine to visualize the mesostructures of the brain with various classical rendering techniques, as well as simple interaction primitives. We demonstrate that our algorithm provides real-time framerates on very large tractograms that were out of reach for previous methods while offering a fiber-level granularity in both rendering and interaction.Item Filtered Quadrics for High‐Speed Geometry Smoothing and Clustering(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Legrand, Hélène; Thiery, Jean‐Marc; Boubekeur, Tamy; Chen, Min and Benes, BedrichModern 3D capture pipelines produce dense surface meshes at high speed, which challenge geometric operators to process such massive data on‐the‐fly. In particular, aiming at instantaneous feature‐preserving smoothing and clustering disqualifies global variational optimizers and one usually relies on high‐performance parallel kernels based on simple measures performed on the positions and normal vectors associated with the surface vertices. Although these operators are effective on small supports, they fail at properly capturing larger scale surface structures. To cope with this problem, we propose to enrich the surface representation with filtered quadrics, a compact and discriminating range space to guide processing. Compared to normal‐based approaches, this additional vertex attribute significantly improves feature preservation for fast bilateral filtering and mode‐seeking clustering, while exhibiting a linear memory cost in the number of vertices and retaining the simplicity of convolutional filters. In particular, the overall performance of our approach stems from its natural compatibility with modern fine‐grained parallel computing architectures such as graphics processor units (GPU). As a result, filtered quadrics offer a superior ability to handle a broad spectrum of frequencies and preserve large salient structures, delivering meshes on‐the‐fly for interactive and streaming applications, as well as quickly processing large data collections, instrumental in learning‐based geometry analysis.Item High Dynamic Range Point Clouds for Real-Time Relighting(The Eurographics Association and John Wiley & Sons Ltd., 2019) Sabbadin, Manuele; Palma, Gianpaolo; BANTERLE, FRANCESCO; Boubekeur, Tamy; Cignoni, Paolo; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonAcquired 3D point clouds make possible quick modeling of virtual scenes from the real world.With modern 3D capture pipelines, each point sample often comes with additional attributes such as normal vector and color response. Although rendering and processing such data has been extensively studied, little attention has been devoted using the light transport hidden in the recorded per-sample color response to relight virtual objects in visual effects (VFX) look-dev or augmented reality (AR) scenarios. Typically, standard relighting environment exploits global environment maps together with a collection of local light probes to reflect the light mood of the real scene on the virtual object. We propose instead a unified spatial approximation of the radiance and visibility relationships present in the scene, in the form of a colored point cloud. To do so, our method relies on two core components: High Dynamic Range (HDR) expansion and real-time Point-Based Global Illumination (PBGI). First, since an acquired color point cloud typically comes in Low Dynamic Range (LDR) format, we boost it using a single HDR photo exemplar of the captured scene that can cover part of it. We perform this expansion efficiently by first expanding the dynamic range of a set of renderings of the point cloud and then projecting these renderings on the original cloud. At this stage, we propagate the expansion to the regions not covered by the renderings or with low-quality dynamic range by solving a Poisson system. Then, at rendering time, we use the resulting HDR point cloud to relight virtual objects, providing a diffuse model of the indirect illumination propagated by the environment. To do so, we design a PBGI algorithm that exploits the GPU's geometry shader stage as well as a new mipmapping operator, tailored for G-buffers, to achieve real-time performances. As a result, our method can effectively relight virtual objects exhibiting diffuse and glossy physically-based materials in real time. Furthermore, it accounts for the spatial embedding of the object within the 3D environment. We evaluate our approach on manufactured scenes to assess the error introduced at every step from the perfect ground truth. We also report experiments with real captured data, covering a range of capture technologies, from active scanning to multiview stereo reconstruction.Item MaterIA: Single Image High-Resolution Material Capture in the Wild(The Eurographics Association and John Wiley & Sons Ltd., 2022) Martin, Rosalie; Roullier, Arthur; Rouffet, Romain; Kaiser, Adrien; Boubekeur, Tamy; Chaine, Raphaëlle; Kim, Min H.We propose a hybrid method to reconstruct a physically-based spatially varying BRDF from a single high resolution picture of an outdoor surface captured under natural lighting conditions with any kind of camera device. Relying on both deep learning and explicit processing, our PBR material acquisition handles the removal of shades, projected shadows and specular highlights present when capturing a highly irregular surface and enables to properly retrieve the underlying geometry. To achieve this, we train two cascaded U-Nets on physically-based materials, rendered under various lighting conditions, to infer the spatiallyvarying albedo and normal maps. Our network processes relatively small image tiles (512x512 pixels) and we propose a solution to handle larger image resolutions by solving a Poisson system across these tiles. We complete this pipeline with analytical solutions to reconstruct height, roughness and ambient occlusion.Item MatMorpher: A Morphing Operator for SVBRDFs(The Eurographics Association, 2021) Gauthier, Alban; Thiery, Jean-Marc; Boubekeur, Tamy; Bousseau, Adrien and McGuire, MorganWe present a novel morphing operator for spatially-varying bidirectional reflectance distribution functions. Our operator takes as input digital materials modeled using a set of 2D texture maps which control the typical parameters of a standard BRDF model. It also takes an interpolation map, defined over the same texture domain, which modulates the interpolation at each texel of the material. Our algorithm is based on a transport mechanism which continuously transforms the individual source maps into their destination counterparts in a feature-sensitive manner. The underlying non-rigid deformation is computed using an energy minimization over a transport grid and accounts for the user-selected dominant features present in the input materials. During this process, we carefully preserve details by mixing the material channels using a histogram-aware color blending combined with a normal reorientation. As a result, our method allows to explore large regions of the space of possible materials using exemplars as anchors and our interpolation scheme as a navigation mean. We also give details about our real time implementation, designed to map faithfully to the standard physically-based rendering workflow and letting users rule interactively the morphing process.Item Multi-modal 3D Image Registration Using Interactive Voxel Grid Deformation and Rendering(The Eurographics Association, 2022) Richard, Thomas; Chastagnier, Yan; Szabo, Vivien; Chalard, Kevin; Summa, Brian; Thiery, Jean-Marc; Boubekeur, Tamy; Faraj, Noura; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuWe introduce a novel multi-modal 3D image registration framework based on 3D user-guided deformation of both volume's shape and intensity values. Being able to apply deformations in 3D gives access to a wide new range of interactions allowing for the registration of images from any acquisition method and of any organ, complete or partial. Our framework uses a state of the art 3D volume rendering method for real-time feedback on the registration accuracy as well as the image deformation. We propose a novel methodological variation to accurately display 3D segmented voxel grids, which is a requirement in a registration context for visualizing a segmented atlas. Our pipeline is implemented in an open-source software (available via GitHub) and was directly used by biologists for registration of mouse brain model autofluorescence acquisition on the Allen Brain Atlas. The latter mapping allows them to retrieve regions of interest properly identified on the segmented atlas in acquired brain datasets and therefore extract only high-resolution images of those areas, avoiding the creation of images too large to be processed.Item Progressive and Efficient Multi-Resolution Representations for Brain Tractograms(The Eurographics Association, 2018) Mercier, Corentin; Gori, Pietro; Rohmer, Damien; Cani, Marie-Paule; Boubekeur, Tamy; Thiery, Jean-Marc; Bloch, Isabelle; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauCurrent tractography methods generate tractograms composed of millions of 3D polylines, called fibers, making visualization and interpretation extremely challenging, thus complexifying the use of this technique in a clinical environment. We propose to progressively simplify tractograms by grouping similar fibers into generalized cylinders. This produces a fine-grained multiresolution model that provides a progressive and real-time navigation through different levels of detail. This model preserves the overall structure of the tractogram and can be adapted to different measures of similarity. We also provide an efficient implementation of the method based on a Delaunay tetrahedralization. We illustrate our method using the Human Connectome Project dataset.Item Progressive Discrete Domains for Implicit Surface Reconstruction(The Eurographics Association and John Wiley & Sons Ltd., 2021) Zhao, Tong; Alliez, Pierre; Boubekeur, Tamy; Busé, Laurent; Thiery, Jean-Marc; Digne, Julie and Crane, KeenanMany global implicit surface reconstruction algorithms formulate the problem as a volumetric energy minimization, trading data fitting for geometric regularization. As a result, the output surfaces may be located arbitrarily far away from the input samples. This is amplified when considering i) strong regularization terms, ii) sparsely distributed samples or iii) missing data. This breaks the strong assumption commonly used by popular octree-based and triangulation-based approaches that the output surface should be located near the input samples. As these approaches refine during a pre-process, their cells near the input samples, the implicit solver deals with a domain discretization not fully adapted to the final isosurface. We relax this assumption and propose a progressive coarse-to-fine approach that jointly refines the implicit function and its representation domain, through iterating solver, optimization and refinement steps applied to a 3D Delaunay triangulation. There are several advantages to this approach: the discretized domain is adapted near the isosurface and optimized to improve both the solver conditioning and the quality of the output surface mesh contoured via marching tetrahedra.Item Real Time Multiscale Rendering of Dense Dynamic Stackings(The Eurographics Association and John Wiley & Sons Ltd., 2020) Michel, Élie; Boubekeur, Tamy; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueDense dynamic aggregates of similar elements are frequent in natural phenomena and challenging to render under full real time constraints. The optimal representation to render them changes drastically depending on the distance at which they are observed, ranging from sets of detailed textured meshes for near views to point clouds for distant ones. Our multiscale representation use impostors to achieve the mid-range transition from mesh-based to point-based scales. To ensure a visual continuum, the impostor model should match as closely as possible the mesh on one side, and reduce to a single pixel response that equals point rendering on the other. In this paper, we propose a model based on rich spherical impostors, able to combine precomputed as well as dynamic procedural data, and offering seamless transitions from close instanced meshes to distant points. Our approach is architectured around an on-the-fly discrimination mechanism and intensively exploits the rough spherical geometry of the impostor proxy. In particular, we propose a new sampling mechanism to reconstruct novel views from the precomputed ones, together with a new conservative occlusion culling method, coupled with a two-pass rendering pipeline leveraging early-Z rejection. As a result, our system scales well and is even able to render sand, while supporting completely dynamic stackings.Item Spectral Mesh Simplification(The Eurographics Association and John Wiley & Sons Ltd., 2020) Lescoat, Thibault; Liu, Hsueh-Ti Derek; Thiery, Jean-Marc; Jacobson, Alec; Boubekeur, Tamy; Ovsjanikov, Maks; Panozzo, Daniele and Assarsson, UlfThe spectrum of the Laplace-Beltrami operator is instrumental for a number of geometric modeling applications, from processing to analysis. Recently, multiple methods were developed to retrieve an approximation of a shape that preserves its eigenvectors as much as possible, but these techniques output a subset of input points with no connectivity, which limits their potential applications. Furthermore, the obtained Laplacian results from an optimization procedure, implying its storage alongside the selected points. Focusing on keeping a mesh instead of an operator would allow to retrieve the latter using the standard cotangent formulation, enabling easier processing afterwards. Instead, we propose to simplify the input mesh using a spectrum-preserving mesh decimation scheme, so that the Laplacian computed on the simplified mesh is spectrally close to the one of the input mesh. We illustrate the benefit of our approach for quickly approximating spectral distances and functional maps on low resolution proxies of potentially high resolution input meshes.Item A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data(© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Kaiser, Adrien; Ybanez Zepeda, Jose Alonso; Boubekeur, Tamy; Chen, Min and Benes, BedrichThe amount of captured 3D data is continuously increasing, with the democratization of consumer depth cameras, the development of modern multi‐view stereo capture setups and the rise of single‐view 3D capture based on machine learning. The analysis and representation of this ever growing volume of 3D data, often corrupted with acquisition noise and reconstruction artefacts, is a serious challenge at the frontier between computer graphics and computer vision. To that end, segmentation and optimization are crucial analysis components of the shape abstraction process, which can themselves be greatly simplified when performed on lightened geometric formats. In this survey, we review the algorithms which extract simple geometric primitives from raw dense 3D data. After giving an introduction to these techniques, from the acquisition modality to the underlying theoretical concepts, we propose an application‐oriented characterization, designed to help select an appropriate method based on one's application needs and compare recent approaches. We conclude by giving hints for how to evaluate these methods and a set of research challenges to be explored.