42-Issue 2
Permanent URI for this collection
Browse
Browsing 42-Issue 2 by Issue Date
Now showing 1 - 20 of 35
Results Per Page
Sort Options
Item Unsupervised Template Warp Consistency for Implicit Surface Correspondences(The Eurographics Association and John Wiley & Sons Ltd., 2023) Liu, Mengya; Chhatkuli, Ajad; Postels, Janis; Gool, Luc Van; Tombari, Federico; Myszkowski, Karol; Niessner, MatthiasUnsupervised template discovery via implicit representation in a category of shapes has recently shown strong performance. At the core, such methods deform input shapes to a common template space which allows establishing correspondences as well as implicit representation of the shapes. In this work we investigate the inherent assumption that the implicit neural field optimization naturally leads to consistently warped shapes, thus providing both good shape reconstruction and correspondences. Contrary to this convenient assumption, in practice we observe that such is not the case, consequently resulting in sub-optimal point correspondences. In order to solve the problem, we re-visit the warp design and more importantly introduce explicit constraints using unsupervised sparse point predictions, directly encouraging consistency of the warped shapes. We use the unsupervised sparse keypoints in order to further condition the deformation warp and enforce the consistency of the deformation warp. Experiments in dynamic non-rigid DFaust and ShapeNet categories show that our problem identification and solution provide the new state-of-the-art in unsupervised dense correspondences.Item EUROGRAPHICS 2023: CGF 42-2 Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2023) Myszkowski, Karol; Niessner, Matthias; Myszkowski, Karol; Niessner, MatthiasItem Variational Pose Prediction with Dynamic Sample Selection from Sparse Tracking Signals(The Eurographics Association and John Wiley & Sons Ltd., 2023) Milef, Nicholas; Sueda, Shinjiro; Kalantari, Nima Khademi; Myszkowski, Karol; Niessner, MatthiasWe propose a learning-based approach for full-body pose reconstruction from extremely sparse upper body tracking data, obtained from a virtual reality (VR) device. We leverage a conditional variational autoencoder with gated recurrent units to synthesize plausible and temporally coherent motions from 4-point tracking (head, hands, and waist positions and orientations). To avoid synthesizing implausible poses, we propose a novel sample selection and interpolation strategy along with an anomaly detection algorithm. Specifically, we monitor the quality of our generated poses using the anomaly detection algorithm and smoothly transition to better samples when the quality falls below a statistically defined threshold. Moreover, we demonstrate that our sample selection and interpolation method can be used for other applications, such as target hitting and collision avoidance, where the generated motions should adhere to the constraints of the virtual environment. Our system is lightweight, operates in real-time, and is able to produce temporally coherent and realistic motions.Item Subpixel Deblurring of Anti-Aliased Raster Clip-Art(The Eurographics Association and John Wiley & Sons Ltd., 2023) Yang, Jinfan; Vining, Nicholas; Kheradmand, Shakiba; Carr, Nathan; Sigal, Leonid; Sheffer, Alla; Myszkowski, Karol; Niessner, MatthiasArtist generated clip-art images typically consist of a small number of distinct, uniformly colored regions with clear boundaries. Legacy artist created images are often stored in low-resolution (100x100px or less) anti-aliased raster form. Compared to anti-aliasing free rasterization, anti-aliasing blurs inter-region boundaries and obscures the artist's intended region topology and color palette; at the same time, it better preserves subpixel details. Recovering the underlying artist-intended images from their low-resolution anti-aliased rasterizations can facilitate resolution independent rendering, lossless vectorization, and other image processing applications. Unfortunately, while human observers can mentally deblur these low-resolution images and reconstruct region topology, color and subpixel details, existing algorithms applicable to this task fail to produce outputs consistent with human expectations when presented with such images. We recover these viewer perceived blur-free images at subpixel resolution, producing outputs where each input pixel is replaced by four corresponding (sub)pixels. Performing this task requires computing the size of the output image color palette, generating the palette itself, and associating each pixel in the output with one of the colors in the palette. We obtain these desired output components by leveraging a combination of perceptual and domain priors, and real world data. We use readily available data to train a network that predicts, for each antialiased image, a low-blur approximation of the blur-free double-resolution outputs we seek. The images obtained at this stage are perceptually closer to the desired outputs but typically still have hundreds of redundant differently colored regions with fuzzy boundaries. We convert these low-blur intermediate images into blur-free outputs consistent with viewer expectations using a discrete partitioning procedure guided by the characteristic properties of clip-art images, observations about the antialiasing process, and human perception of anti-aliased clip-art. This step dramatically reduces the size of the output color palettes, and the region counts bringing them in line with viewer expectations and enabling the image processing applications we target. We demonstrate the utility of our method by using our outputs for a number of image processing tasks, and validate it via extensive comparisons to prior art. In our comparative study, participants preferred our deblurred outputs over those produced by the best-performing alternative by a ratio of 75 to 8.5.Item Face Editing Using Part-Based Optimization of the Latent Space(The Eurographics Association and John Wiley & Sons Ltd., 2023) Aliari, Mohammad Amin; Beauchamp, Andre; Popa, Tiberiu; Paquette, Eric; Myszkowski, Karol; Niessner, MatthiasWe propose an approach for interactive 3D face editing based on deep generative models. Most of the current face modeling methods rely on linear methods and cannot express complex and non-linear deformations. In contrast to 3D morphable face models based on Principal Component Analysis (PCA), we introduce a novel architecture based on variational autoencoders. Our architecture has multiple encoders (one for each part of the face, such as the nose and mouth) which feed a single decoder. As a result, each sub-vector of the latent vector represents one part. We train our model with a novel loss function that further disentangles the space based on different parts of the face. The output of the network is a whole 3D face. Hence, unlike partbased PCA methods, our model learns to merge the parts intrinsically and does not require an additional merging process. To achieve interactive face modeling, we optimize for the latent variables given vertex positional constraints provided by a user. To avoid unwanted global changes elsewhere on the face, we only optimize the subset of the latent vector that corresponds to the part of the face being modified. Our editing optimization converges in less than a second. Our results show that the proposed approach supports a broader range of editing constraints and generates more realistic 3D faces.Item Scene-Aware 3D Multi-Human Motion Capture from a Single Camera(The Eurographics Association and John Wiley & Sons Ltd., 2023) Luvizon, Diogo C.; Habermann, Marc; Golyanik, Vladislav; Kortylewski, Adam; Theobalt, Christian; Myszkowski, Karol; Niessner, MatthiasIn this work, we consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera. In contrast to expensive marker-based or multi-view systems, our lightweight setup is ideal for private users as it enables an affordable 3D motion capture that is easy to install and does not require expert knowledge. To deal with this challenging setting, we leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks. Thus, we introduce the first non-linear optimization-based approach that jointly solves for the 3D position of each human, their articulated pose, their individual shapes as well as the scale of the scene. In particular, we estimate the scene depth and person scale from normalized disparity predictions using the 2D body joints and joint angles. Given the per-frame scene depth, we reconstruct a point-cloud of the static scene in 3D space. Finally, given the per-frame 3D estimates of the humans and scene point-cloud, we perform a space-time coherent optimization over the video to ensure temporal, spatial and physical plausibility. We evaluate our method on established multi-person 3D human pose benchmarks where we consistently outperform previous methods and we qualitatively demonstrate that our method is robust to in-thewild conditions including challenging scenes with people of different sizes. Code: https://github.com/dluvizon/ scene-aware-3d-multi-humanItem Interactive Depixelization of Pixel Art through Spring Simulation(The Eurographics Association and John Wiley & Sons Ltd., 2023) Matusovic, Marko; Parakkat, Amal Dev; Eisemann, Elmar; Myszkowski, Karol; Niessner, MatthiasWe introduce an approach for converting pixel art into high-quality vector images. While much progress has been made on automatic conversion, there is an inherent ambiguity in pixel art, which can lead to a mismatch with the artist's original intent. Further, there is room for incorporating aesthetic preferences during the conversion. In consequence, this work introduces an interactive framework to enable users to guide the conversion process towards high-quality vector illustrations. A key idea of the method is to cast the conversion process into a spring-system optimization that can be influenced by the user. Hereby, it is possible to resolve various ambiguities that cannot be handled by an automatic algorithm.Item Surface Maps via Adaptive Triangulations(The Eurographics Association and John Wiley & Sons Ltd., 2023) Schmidt, Patrick; Pieper, Dörte; Kobbelt, Leif; Myszkowski, Karol; Niessner, MatthiasWe present a new method to compute continuous and bijective maps (surface homeomorphisms) between two or more genus-0 triangle meshes. In contrast to previous approaches, we decouple the resolution at which a map is represented from the resolution of the input meshes. We discretize maps via common triangulations that approximate the input meshes while remaining in bijective correspondence to them. Both the geometry and the connectivity of these triangulations are optimized with respect to a single objective function that simultaneously controls mapping distortion, triangulation quality, and approximation error. A discrete-continuous optimization algorithm performs both energy-based remeshing as well as global second-order optimization of vertex positions, parametrized via the sphere. With this, we combine the disciplines of compatible remeshing and surface map optimization in a unified formulation and make a contribution in both fields. While existing compatible remeshing algorithms often operate on a fixed pre-computed surface map, we can now globally update this correspondence during remeshing. On the other hand, bijective surface-to-surface map optimization previously required computing costly overlay meshes that are inherently tied to the input mesh resolution. We achieve significant complexity reduction by instead assessing distortion between the approximating triangulations. This new map representation is inherently more robust than previous overlay-based approaches, is less intricate to implement, and naturally supports mapping between more than two surfaces. Moreover, it enables adaptive multi-resolution schemes that, e.g., first align corresponding surface regions at coarse resolutions before refining the map where needed. We demonstrate significant speedups and increased flexibility over state-of-the art mapping algorithms at similar map quality, and also provide a reference implementation of the method.Item Scalable and Efficient Functional Map Computations on Dense Meshes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Magnet, Robin; Ovsjanikov, Maks; Myszkowski, Karol; Niessner, MatthiasWe propose a new scalable version of the functional map pipeline that allows to efficiently compute correspondences between potentially very dense meshes. Unlike existing approaches that process dense meshes by relying on ad-hoc mesh simplification, we establish an integrated end-to-end pipeline with theoretical approximation analysis. In particular, our method overcomes the computational burden of both computing the basis, as well the functional and pointwise correspondence computation by approximating the functional spaces and the functional map itself. Errors in the approximations are controlled by theoretical upper bounds assessing the range of applicability of our pipeline.With this construction in hand, we propose a scalable practical algorithm and demonstrate results on dense meshes, which approximate those obtained by standard functional map algorithms at the fraction of the computation time. Moreover, our approach outperforms the standard acceleration procedures by a large margin, leading to accurate results even in challenging cases.Item Physics-Informed Neural Corrector for Deformation-based Fluid Control(The Eurographics Association and John Wiley & Sons Ltd., 2023) Tang, Jingwei; Kim, Byungsoo; Azevedo, Vinicius C.; Solenthaler, Barbara; Myszkowski, Karol; Niessner, MatthiasControlling fluid simulations is notoriously difficult due to its high computational cost and the fact that user control inputs can cause unphysical motion. We present an interactive method for deformation-based fluid control. Our method aims at balancing the direct deformations of fluid fields and the preservation of physical characteristics. We train convolutional neural networks with physics-inspired loss functions together with a differentiable fluid simulator, and provide an efficient workflow for flow manipulations at test time. We demonstrate diverse test cases to analyze our carefully designed objectives and show that they lead to physical and eventually visually appealing modifications on edited fluid data.Item Simulating Analogue Film Damage to Analyse and Improve Artefact Restoration on High-resolution Scans(The Eurographics Association and John Wiley & Sons Ltd., 2023) Ivanova, Daniela; Williamson, John; Henderson, Paul; Myszkowski, Karol; Niessner, MatthiasDigital scans of analogue photographic film typically contain artefacts such as dust and scratches. Automated removal of these is an important part of preservation and dissemination of photographs of historical and cultural importance. While state-of-the-art deep learning models have shown impressive results in general image inpainting and denoising, film artefact removal is an understudied problem. It has particularly challenging requirements, due to the complex nature of analogue damage, the high resolution of film scans, and potential ambiguities in the restoration. There are no publicly available highquality datasets of real-world analogue film damage for training and evaluation, making quantitative studies impossible. We address the lack of ground-truth data for evaluation by collecting a dataset of 4K damaged analogue film scans paired with manually-restored versions produced by a human expert, allowing quantitative evaluation of restoration performance. We have made the dataset available at https://doi.org/10.6084/m9.figshare.21803304. We construct a larger synthetic dataset of damaged images with paired clean versions using a statistical model of artefact shape and occurrence learnt from real, heavily-damaged images. We carefully validate the realism of the simulated damage via a human perceptual study, showing that even expert users find our synthetic damage indistinguishable from real. In addition, we demonstrate that training with our synthetically damaged dataset leads to improved artefact segmentation performance when compared to previously proposed synthetic analogue damage overlays. The synthetically damaged dataset can be found at https://doi.org/10.6084/m9. figshare.21815844, and the annotated authentic artefacts along with the resulting statistical damage model at https:// github.com/daniela997/FilmDamageSimulator. Finally, we use these datasets to train and analyse the performance of eight state-of-the-art image restoration methods on high-resolution scans. We compare both methods which directly perform the restoration task on scans with artefacts, and methods which require a damage mask to be provided for the inpainting of artefacts. We modify the methods to process the inputs in a patch-wise fashion to operate on original high resolution film scans.Item Directionality-Aware Design of Embroidery Patterns(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zhenyuan, Liu; Piovarci, Michal; Hafner, Christian; Charrondière, Raphaël; Bickel, Bernd; Myszkowski, Karol; Niessner, MatthiasEmbroidery is a long-standing and high-quality approach to making logos and images on textiles. Nowadays, it can also be performed via automated machines that weave threads with high spatial accuracy. A characteristic feature of the appearance of the threads is a high degree of anisotropy. The anisotropic behavior is caused by depositing thin but long strings of thread. As a result, the stitched patterns convey both color and direction. Artists leverage this anisotropic behavior to enhance pure color images with textures, illusions of motion, or depth cues. However, designing colorful embroidery patterns with prescribed directionality is a challenging task, one usually requiring an expert designer. In this work, we propose an interactive algorithm that generates machine-fabricable embroidery patterns from multi-chromatic images equipped with user-specified directionality fields.We cast the problem of finding a stitching pattern into vector theory. To find a suitable stitching pattern, we extract sources and sinks from the divergence field of the vector field extracted from the input and use them to trace streamlines. We further optimize the streamlines to guarantee a smooth and connected stitching pattern. The generated patterns approximate the color distribution constrained by the directionality field. To allow for further artistic control, the trade-off between color match and directionality match can be interactively explored via an intuitive slider. We showcase our approach by fabricating several embroidery paths.Item How Will It Drape Like? Capturing Fabric Mechanics from Depth Images(The Eurographics Association and John Wiley & Sons Ltd., 2023) Rodriguez-Pardo, Carlos; Prieto-Martín, Melania; Casas, Dan; Garces, Elena; Myszkowski, Karol; Niessner, MatthiasWe propose a method to estimate the mechanical parameters of fabrics using a casual capture setup with a depth camera. Our approach enables to create mechanically-correct digital representations of real-world textile materials, which is a fundamental step for many interactive design and engineering applications. As opposed to existing capture methods, which typically require expensive setups, video sequences, or manual intervention, our solution can capture at scale, is agnostic to the optical appearance of the textile, and facilitates fabric arrangement by non-expert operators. To this end, we propose a sim-to-real strategy to train a learning-based framework that can take as input one or multiple images and outputs a full set of mechanical parameters. Thanks to carefully designed data augmentation and transfer learning protocols, our solution generalizes to real images despite being trained only on synthetic data, hence successfully closing the sim-to-real loop. Key in our work is to demonstrate that evaluating the regression accuracy based on the similarity at parameter space leads to an inaccurate distances that do not match the human perception. To overcome this, we propose a novel metric for fabric drape similarity that operates on the image domain instead on the parameter space, allowing us to evaluate our estimation within the context of a similarity rank. We show that out metric correlates with human judgments about the perception of drape similarity, and that our model predictions produce perceptually accurate results compared to the ground truth parameters.Item In-the-wild Material Appearance Editing using Perceptual Attributes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Subías, José Daniel; Lagunas, Manuel; Myszkowski, Karol; Niessner, MatthiasIntuitively editing the appearance of materials from a single image is a challenging task given the complexity of the interactions between light and matter, and the ambivalence of human perception. This problem has been traditionally addressed by estimating additional factors of the scene like geometry or illumination, thus solving an inverse rendering problem and subduing the final quality of the results to the quality of these estimations. We present a single-image appearance editing framework that allows us to intuitively modify the material appearance of an object by increasing or decreasing high-level perceptual attributes describing such appearance (e.g., glossy or metallic). Our framework takes as input an in-the-wild image of a single object, where geometry, material, and illumination are not controlled, and inverse rendering is not required. We rely on generative models and devise a novel architecture with Selective Transfer Unit (STU) cells that allow to preserve the high-frequency details from the input image in the edited one. To train our framework we leverage a dataset with pairs of synthetic images rendered with physically-based algorithms, and the corresponding crowd-sourced ratings of high-level perceptual attributes. We show that our material editing framework outperforms the state of the art, and showcase its applicability on synthetic images, in-the-wild real-world photographs, and video sequences.Item Img2Logo: Generating Golden Ratio Logos from Images(The Eurographics Association and John Wiley & Sons Ltd., 2023) Hsiao, Kai-Wen; Yang, Yong-Liang; Chiu, Yung-Chih; Hu, Min-Chun; Yao, Chih-Yuan; Chu, Hung-Kuo; Myszkowski, Karol; Niessner, MatthiasLogos are one of the most important graphic design forms that use an abstracted shape to clearly represent the spirit of a community. Among various styles of abstraction, a particular golden-ratio design is frequently employed by designers to create a concise and regular logo. In this context, designers utilize a set of circular arcs with golden ratios (i.e., all arcs are taken from circles whose radii form a geometric series based on the golden ratio) as the design elements to manually approximate a target shape. This error-prone process requires a large amount of time and effort, posing a significant challenge for design space exploration. In this work, we present a novel computational framework that can automatically generate golden ratio logo abstractions from an input image. Our framework is based on a set of carefully identified design principles and a constrained optimization formulation respecting these principles. We also propose a progressive approach that can efficiently solve the optimization problem, resulting in a sequence of abstractions that approximate the input at decreasing levels of detail. We evaluate our work by testing on images with different formats including real photos, clip arts, and line drawings. We also extensively validate the key components and compare our results with manual results by designers to demonstrate the effectiveness of our framework. Moreover, our framework can largely benefit design space exploration via easy specification of design parameters such as abstraction levels, golden circle sizes, etc.Item A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2023) Weinrauch, Alexander; Mlakar, Daniel; Seidel, Hans-Peter; Steinberger, Markus; Zayer, Rhaleb; Myszkowski, Karol; Niessner, MatthiasThe humble loop shrinking property played a central role in the inception of modern topology but it has been eclipsed by more abstract algebraic formalisms. This is particularly true in the context of detecting relevant non-contractible loops on surfaces where elaborate homological and/or graph theoretical constructs are favored in algorithmic solutions. In this work, we devise a variational analogy to the loop shrinking property and show that it yields a simple, intuitive, yet powerful solution allowing a streamlined treatment of the problem of handle and tunnel loop detection. Our formalization tracks the evolution of a diffusion front randomly initiated on a single location on the surface. Capitalizing on a diffuse interface representation combined with a set of rules for concurrent front interactions, we develop a dynamic data structure for tracking the evolution on the surface encoded as a sparse matrix which serves for performing both diffusion numerics and loop detection and acts as the workhorse of our fully parallel implementation. The substantiated results suggest our approach outperforms state of the art and robustly copes with highly detailed geometric models. As a byproduct, our approach can be used to construct Reeb graphs by diffusion thus avoiding commonly encountered issues when using Morse functions.Item CubeGAN: Omnidirectional Image Synthesis Using Generative Adversarial Networks(The Eurographics Association and John Wiley & Sons Ltd., 2023) May, Christopher; Aliaga, Daniel; Myszkowski, Karol; Niessner, MatthiasWe propose a framework to create projectively-correct and seam-free cube-map images using generative adversarial learning. Deep generation of cube-maps that contain the correct projection of the environment onto its faces is not straightforward as has been recognized in prior work. Our approach extends an existing framework, StyleGAN3, to produce cube-maps instead of planar images. In addition to reshaping the output, we include a cube-specific volumetric initialization component, a projective resampling component, and a modification of augmentation operations to the spherical domain. Our results demonstrate the network's generation capabilities trained on imagery from various 3D environments. Additionally, we show the power and quality of our GAN design in an inversion task, combined with navigation capabilities, to perform novel view synthesis.Item Editing Compressed High-resolution Voxel Scenes with Attributes(The Eurographics Association and John Wiley & Sons Ltd., 2023) Molenaar, Mathijs; Eisemann, Elmar; Myszkowski, Karol; Niessner, MatthiasSparse Voxel Directed Acyclic Graphs (SVDAGs) are an efficient solution for storing high-resolution voxel geometry. Recently, algorithms for the interactive modification of SVDAGs have been proposed that maintain the compressed geometric representation. Nevertheless, voxel attributes, such as colours, require an uncompressed storage, which can result in high memory usage over the course of the application. The reason is the high cost of existing attribute-compression schemes which remain unfit for interactive applications. In this paper, we introduce two attribute compression methods (lossless and lossy), which enable the interactive editing of compressed high-resolution voxel scenes including attributes.Item Evolving Guide Subdivision(The Eurographics Association and John Wiley & Sons Ltd., 2023) Karciauskas, Kestutis; Peters, Jorg; Myszkowski, Karol; Niessner, MatthiasTo overcome the well-known shape deficiencies of bi-cubic subdivision surfaces, Evolving Guide subdivision (EG subdivision) generalizes C2 bi-quartic (bi-4) splines that approximate a sequence of piecewise polynomial surface pieces near extraordinary points. Unlike guided subdivision, which achieves good shape by following a guide surface in a two-stage, geometry-dependent process, EG subdivision is defined by five new explicit subdivision rules. While formally only C1 at extraordinary points, EG subdivision applied to an obstacle course of inputs generates surfaces without the oscillations and pinched highlight lines typical for Catmull-Clark subdivision. EG subdivision surfaces join C2 with bi-3 surface pieces obtained by interpreting regular sub-nets as bi-cubic tensor-product splines and C2 with adjacent EG surfaces. The EG subdivision control net surrounding an extraordinary node can have the same structure as Catmull-Clark subdivision: two rings of 4-sided facets around each extraordinary nodes so that extraordinary nodes are separated by at least one regular node.Item Interactive Design of 2D Car Profiles with Aerodynamic Feedback(The Eurographics Association and John Wiley & Sons Ltd., 2023) Rosset, Nicolas; Cordonnier, Guillaume; Duvigneau, Régis; Bousseau, Adrien; Myszkowski, Karol; Niessner, MatthiasThe design of car shapes requires a delicate balance between aesthetic and performance. While fluid simulation provides the means to evaluate the aerodynamic performance of a given shape, its computational cost hinders its usage during the early explorative phases of design, when aesthetic is decided upon. We present an interactive system to assist designers in creating aerodynamic car profiles. Our system relies on a neural surrogate model to predict fluid flow around car shapes, providing fluid visualization and shape optimization feedback to designers as soon as they sketch a car profile. Compared to prior work that focused on time-averaged fluid flows, we describe how to train our model on instantaneous, synchronized observations extracted from multiple pre-computed simulations, such that we can visualize and optimize for dynamic flow features, such as vortices. Furthermore, we architectured our model to support gradient-based shape optimization within a learned latent space of car profiles. In addition to regularizing the optimization process, this latent space and an associated encoder-decoder allows us to input and output car profiles in a bitmap form, without any explicit parameterization of the car boundary. Finally, we designed our model to support pointwise queries of fluid properties around car shapes, allowing us to adapt computational cost to application needs. As an illustration, we only query our model along streamlines for flow visualization, we query it in the vicinity of the car for drag optimization, and we query it behind the car for vortex attenuation.