33-Issue 2
Permanent URI for this collection
Browse
Browsing 33-Issue 2 by Issue Date
Now showing 1 - 20 of 53
Results Per Page
Sort Options
Item ExploreMaps: Efficient Construction and Ubiquitous Exploration of Panoramic View Graphs of Complex 3D Environments(The Eurographics Association and John Wiley and Sons Ltd., 2014) Benedetto, Marco Di; Ganovelli, Fabio; Rodriguez, Marcos Balsa; Villanueva, Alberto Jaspe; Scopigno, Roberto; Gobbetti, Enrico; B. Levy and J. KautzWe introduce a novel efficient technique for automatically transforming a generic renderable 3D scene into a simple graph representation named ExploreMaps, where nodes are nicely placed point of views, called probes, and arcs are smooth paths between neighboring probes. Each probe is associated with a panoramic image enriched with preferred viewing orientations, and each path with a panoramic video. Our GPU-accelerated unattended construction pipeline distributes probes so as to guarantee coverage of the scene while accounting for perceptual criteria before finding smooth, good looking paths between neighboring probes. Images and videos are precomputed at construction time with off-line photorealistic rendering engines, providing a convincing 3D visualization beyond the limits of current real-time graphics techniques. At run-time, the graph is exploited both for creating automatic scene indexes and movie previews of complex scenes and for supporting interactive exploration through a low-DOF assisted navigation interface and the visual indexing of the scene provided by the selected viewpoints. Due to negligible CPU overhead and very limited use of GPU functionality, real-time performance is achieved on emerging web-based environments based on WebGL even on low-powered mobile devices.Item Parallel Generation of Architecture on the GPU(The Eurographics Association and John Wiley and Sons Ltd., 2014) Steinberger, Markus; Kenzel, Michael; Kainz, Bernhard; Müller, Jörg; Wonka, Peter; Schmalstieg, Dieter; B. Levy and J. KautzIn this paper, we present a novel approach for the parallel evaluation of procedural shape grammars on the graphics processing unit (GPU). Unlike previous approaches that are either limited in the kind of shapes they allow, the amount of parallelism they can take advantage of, or both, our method supports state of the art procedural modeling including stochasticity and context-sensitivity. To increase parallelism, we explicitly express independence in the grammar, reduce inter-rule dependencies required for context-sensitive evaluation, and introduce intra-rule parallelism. Our rule scheduling scheme avoids unnecessary back and forth between CPU and GPU and reduces round trips to slow global memory by dynamically grouping rules in on-chip shared memory. Our GPU shape grammar implementation is multiple orders of magnitude faster than the standard in CPU-based rule evaluation, while offering equal expressive power. In comparison to the state of the art in GPU shape grammar derivation, our approach is nearly 50 times faster, while adding support for geometric context-sensitivity.Item Perceptual Depth Compression for Stereo Applications(The Eurographics Association and John Wiley and Sons Ltd., 2014) Pajak, Dawid; Herzog, Robert; Mantiuk, Radoslaw; Didyk, Piotr; Eisemann, Elmar; Myszkowski, Karol; Pulli, Kari; B. Levy and J. KautzConventional depth video compression uses video codecs designed for color images. Given the performance of current encoding standards, this solution seems efficient. However, such an approach suffers from many issues stemming from discrepancies between depth and light perception. To exploit the inherent limitations of human depth perception, we propose a novel depth compression method that employs a disparity perception model. In contrast to previous methods, we account for disparity masking, and model a distinct relation between depth perception and contrast in luminance. Our solution is a natural extension to the H.264 codec and can easily be integrated into existing decoders. It significantly improves both the compression efficiency without sacrificing visual quality of depth of rendered content, and the output of depth-reconstruction algorithms or depth cameras.Item SimSelect: Similarity-based Selection for 3D Surfaces(The Eurographics Association and John Wiley and Sons Ltd., 2014) Guy, Emilie; Thiery, Jean-Marc; Boubekeur, Tamy; B. Levy and J. KautzSurface selection is one of the fundamental interactions in shape modeling. In the case of complex models, this task is often tedious for at least two reasons: firstly the local geometry of a given region may be hard to manually select and needs great accuracy; secondly the selection process may have to be repeated a large number of times for similar regions requiring similar subsequent editing. We propose SimSelect, a new system for interactive selection on 3D surfaces addressing these two issues. We cope with the accuracy issue by classifying selections in different types, namely components, parts and patches for which we independently optimize the selection process. Second, we address the repetitiveness issue by introducing an expansion process based on shape recognition which automatically retrieves potential selections similar to the user-defined one. As a result, our system provides the user with a compact set of simple interaction primitives providing a smooth select-and-edit workflow.Item Game Level Layout from Design Specification(The Eurographics Association and John Wiley and Sons Ltd., 2014) Ma, Chongyang; Vining, Nicholas; Lefebvre, Sylvain; Sheffer, Alla; B. Levy and J. KautzThe design of video game environments, or levels, aims to control gameplay by steering the player through a sequence of designer-controlled steps, while simultaneously providing a visually engaging experience. Traditionally these levels are painstakingly designed by hand, often from pre-existing building blocks, or space templates. In this paper, we propose an algorithmic approach for automatically laying out game levels from user-specified blocks. Our method allows designers to retain control of the gameplay flow via user-specified level connectivity graphs, while relieving them from the tedious task of manually assembling the building blocks into a valid, plausible layout. Our method produces sequences of diverse layouts for the same input connectivity, allowing for repeated replay of a given level within a visually different, new environment. We support complex graph connectivities and various building block shapes, and are able to compute complex layouts in seconds. The two key components of our algorithm are the use of configuration spaces defining feasible relative positions of building blocks within a layout and a graph-decomposition based layout strategy that leverages graph connectivity to speed up convergence and avoid local minima. Together these two tools quickly steer the solution toward feasible layouts. We demonstrate our method on a variety of real-life inputs, and generate appealing layouts conforming to user specificationsItem Parameter Estimation and Comparative Evaluation of Crowd Simulations(The Eurographics Association and John Wiley and Sons Ltd., 2014) Wolinski, David; Guy, Stephen; Olivier, Anne-Helene; Lin, Ming; Manocha, Dinesh; Pettré, Julien; B. Levy and J. KautzWe present a novel framework to evaluate multi-agent crowd simulation algorithms based on real-world observations of crowd movements. A key aspect of our approach is to enable fair comparisons by automatically estimating the parameters that enable the simulation algorithms to best fit the given data. We formulate parameter estimation as an optimization problem, and propose a general framework to solve the combinatorial optimization problem for all parameterized crowd simulation algorithms. Our framework supports a variety of metrics to compare reference data and simulation outputs. The reference data may correspond to recorded trajectories, macroscopic parameters, or artist-driven sketches. We demonstrate the benefits of our framework for example-based simulation, modeling of cultural variations, artist-driven crowd animation, and relative comparison of some widely-used multi-agent simulation algorithms.Item Art-Photographic Detail Enhancement(The Eurographics Association and John Wiley and Sons Ltd., 2014) Son, Minjung; Lee, Yunjin; Kang, Henry; Lee, Seungyong; B. Levy and J. KautzWe present a novel method for enhancing details in a digital photograph, inspired by the principle of art photography. In contrast to the previous methods that primarily rely on tone scaling, our technique provides a flexible tone transform model that consists of two operators: shifting and scaling. This model permits shifting of the tonal range in each image region to enable significant detail boosting regardless of the original tone. We optimize these shift and scale factors in our constrained optimization framework to achieve extreme detail enhancement across the image in a piecewise smooth fashion, as in art photography. The experimental results show that the proposed method brings out a significantly large amount of details even from an ordinary low-dynamic range image.Item On-line Real-time Physics-based Predictive Motion Control with Balance Recovery(The Eurographics Association and John Wiley and Sons Ltd., 2014) Han, Daseong; Noh, Junyong; Jin, Xiaogang; Shin), Joseph S. Shin (formerly Sung Y.; B. Levy and J. KautzIn this paper, we present an on-line real-time physics-based approach to motion control with contact repositioning based on a low-dimensional dynamics model using example motion data. Our approach first generates a reference motion in run time according to an on-line user request by transforming an example motion extracted from a motion library. Guided by the reference motion, it repeatedly generates an optimal control policy for a small time window one at a time for a sequence of partially overlapping windows, each covering a couple of footsteps of the reference motion, which supports an on-line performance. On top of this, our system dynamics and problem formulation allow to derive closed-form derivative functions by exploiting the low-dimensional dynamics model together with example motion data. These derivative functions and their sparse structures facilitate a real-time performance. Our approach also allows contact foot repositioning so as to robustly respond to an external perturbation or an environmental change as well as to perform locomotion tasks such as stepping on stones effectively.Item Preface and Table of Contents(The Eurographics Association and Blackwell Publishing Ltd., 2014) B. Levy and J. KautzItem Laplacian Colormaps: a Framework for Structure-preserving Color Transformations(The Eurographics Association and John Wiley and Sons Ltd., 2014) Eynard, Davide; Kovnatsky, Artiom; Bronstein, Michael M.; B. Levy and J. KautzMappings between color spaces are ubiquitous in image processing problems such as gamut mapping, decolorization, and image optimization for color-blind people. Simple color transformations often result in information loss and ambiguities, and one wishes to find an image-specific transformation that would preserve as much as possible the structure of the original image in the target color space. In this paper, we propose Laplacian colormaps, a generic framework for structure-preserving color transformations between images. We use the image Laplacian to capture the structural information, and show that if the color transformation between two images preserves the structure, the respective Laplacians have similar eigenvectors, or in other words, are approximately jointly diagonalizable. Employing the relation between joint diagonalizability and commutativity of matrices, we use Laplacians commutativity as a criterion of color mapping quality and minimize it w.r.t. the parameters of a color transformation to achieve optimal structure preservation. We show numerous applications of our approach, including color-to-gray conversion, gamut mapping, multispectral image fusion, and image optimization for color deficient viewers.Item Manipulating Refractive and Reflective Binocular Disparity(The Eurographics Association and John Wiley and Sons Ltd., 2014) Dabala, Lukasz; Kellnhofer, Petr; Ritschel, Tobias; Didyk, Piotr; Templin, Krzysztof; Myszkowski, Karol; Rokita, P.; Seidel, Hans-Peter; B. Levy and J. KautzPresenting stereoscopic content on 3D displays is a challenging task, usually requiring manual adjustments. A number of techniques have been developed to aid this process, but they account for binocular disparity of surfaces that are diffuse and opaque only. However, combinations of transparent as well as specular materials are common in the real and virtual worlds, and pose a significant problem. For example, excessive disparities can be created which cannot be fused by the observer. Also, multiple stereo interpretations become possible, e. g., for glass, that both reflects and refracts, which may confuse the observer and result in poor 3D experience. In this work, we propose an efficient method for analyzing and controlling disparities in computer-generated images of such scenes where surface positions and a layer decomposition are available. Instead of assuming a single per-pixel disparity value, we estimate all possibly perceived disparities at each image location. Based on this representation, we define an optimization to find the best per-pixel camera parameters, assuring that all disparities can be easily fused by a human. A preliminary perceptual study indicates, that our approach combines comfortable viewing with realistic depiction of typical specular scenes.Item Dual-Color Mixing for Fused Deposition Modeling Printers(The Eurographics Association and John Wiley and Sons Ltd., 2014) Reiner, Tim; Carr, Nathan; Mech, Radomir; Stava, Ondrej; Dachsbacher, Carsten; Miller, Gavin; B. Levy and J. KautzIn this work we detail a method that leverages the two color heads of recent low-end fused deposition modeling (FDM) 3D printers to produce continuous tone imagery. The challenge behind producing such two-tone imagery is how to finely interleave the two colors while minimizing the switching between print heads, making each color printed span as long and continuous as possible to avoid artifacts associated with printing short segments. The key insight behind our work is that by applying small geometric offsets, tone can be varied without the need to switch color print heads within a single layer. We can now effectively print (two-tone) texture mapped models capturing both geometric and color information in our output 3D prints.Item Deformation with Enforced Metrics on Length, Area and Volume(The Eurographics Association and John Wiley and Sons Ltd., 2014) Jin, Shuo; Zhang, Yunbo; Wang, Charlie C. L.; B. Levy and J. KautzTechniques have been developed to deform a mesh with multiple types of constraints. One limitation of prior methods is that the accuracy of demanded metrics on the resultant model cannot be guaranteed. Adding metrics directly as hard constraints to an optimization functional often leads to unexpected distortion when target metrics differ significant from what are on the input model. In this paper, we present an effective framework to deform mesh models by enforcing demanded metrics on length, area and volume. To approach target metrics stably and minimize distortion, an iterative scale-driven deformation is investigated, and a global optimization functional is exploited to balance the scaling effect at different parts of a model. Examples demonstrate that our approach provides a user-friendly tool for designers who are used to semantic input.Item Object Detection and Classification from Large-Scale Cluttered Indoor Scans(The Eurographics Association and John Wiley and Sons Ltd., 2014) Mattausch, Oliver; Panozzo, Daniele; Mura, Claudio; Sorkine-Hornung, Olga; Pajarola, Renato; B. Levy and J. KautzWe present a method to automatically segment indoor scenes by detecting repeated objects. Our algorithm scales to datasets with 198 million points and does not require any training data. We propose a trivially parallelizable preprocessing step, which compresses a point cloud into a collection of nearly-planar patches related by geometric transformations. This representation enables us to robustly filter out noise and greatly reduces the computational cost and memory requirements of our method, enabling execution at interactive rates. We propose a patch similarity measure based on shape descriptors and spatial configurations of neighboring patches. The patches are clustered in a Euclidean embedding space based on the similarity matrix to yield the segmentation of the input point cloud. The generated segmentation can be used to compress the raw point cloud, create an object database, and increase the clarity of the point cloud visualization.Item IISPH-FLIP for Incompressible Fluids(The Eurographics Association and John Wiley and Sons Ltd., 2014) Cornelis, Jens; Ihmsen, Markus; Peer, Andreas; Teschner, Matthias; B. Levy and J. KautzWe propose to use Implicit Incompressible Smoothed Particle Hydrodynamics (IISPH) for pressure projection and boundary handling in Fluid-Implicit-Particle (FLIP) solvers for the simulation of incompressible fluids. This novel combination addresses two issues of existing SPH and FLIP solvers, namely mass preservation in FLIP and efficiency and memory consumption in SPH. First, the SPH component enables the simulation of incompressible fluids with perfect mass preservation. Second, the FLIP component efficiently enriches the SPH component with detail that is comparable to a standard SPH simulation with the same number of particles, while improving the performance by a factor of 7 and significantly reducing the memory consumption. We demonstrate that the proposed IISPH-FLIP solver can simulate incompressible fluids with a quantifiable, imperceptible density deviation below 0.1 percent. We show large-scale scenarios with up to 160 million particles that have been processed on a single desktop PC using only 15GB of memory. One- and two-way coupled solids are illustrated.Item Panorama Light-Field Imaging(The Eurographics Association and John Wiley and Sons Ltd., 2014) Birklbauer, Clemens; Bimber, Oliver; B. Levy and J. KautzWe present a novel approach to recording and computing panorama light fields. In contrast to previous methods that estimate panorama light fields from focal stacks or naive multi-perspective image stitching, our approach is the first that processes ray entries directly and does not require depth reconstruction or matching of image features. Arbitrarily complex scenes can therefore be captured while preserving correct occlusion boundaries, anisotropic reflections, refractions, and other light effects that go beyond diffuse reflections of Lambertian surfaces.Item Optimizing Stereo-to-Multiview Conversion for Autostereoscopic Displays(The Eurographics Association and John Wiley and Sons Ltd., 2014) Chapiro, Alexandre; Heinzle, Simon; Aydin, Tunç Ozan; Poulakos, Steven; Zwicker, Matthias; Smolic, Aljosa; Gross, Markus; B. Levy and J. KautzWe present a novel stereo-to-multiview video conversion method for glasses-free multiview displays. Different from previous stereo-to-multiview approaches, our mapping algorithm utilizes the limited depth range of autostereoscopic displays optimally and strives to preserve the scene s artistic composition and perceived depth even under strong depth compression. We first present an investigation of how perceived image quality relates to spatial frequency and disparity. The outcome of this study is utilized in a two-step mapping algorithm, where we (i) compress the scene depth using a non-linear global function to the depth range of an autostereoscopic display, and (ii) enhance the depth gradients of salient objects to restore the perceived depth and salient scene structure. Finally, an adapted image domain warping algorithm is proposed to generate the multiview output, which enables overall disparity range extension.Item Spatio-Temporal Geometry Fusion for Multiple Hybrid Cameras using Moving Least Squares Surfaces(The Eurographics Association and John Wiley and Sons Ltd., 2014) Kuster, Claudia; Bazin, Jean-Charles; Öztireli, Cengiz; Deng, Teng; Martin, Tobias; Popa, Tiberiu; Gross, Markus; B. Levy and J. KautzMulti-view reconstruction aims at computing the geometry of a scene observed by a set of cameras. Accurate 3D reconstruction of dynamic scenes is a key component for a large variety of applications, ranging from special effects to telepresence and medical imaging. In this paper we propose a method based on Moving Least Squares surfaces which robustly and efficiently reconstructs dynamic scenes captured by a calibrated set of hybrid color+depth cameras. Our reconstruction provides spatio-temporal consistency and seamlessly fuses color and geometric information. We illustrate our approach on a variety of real sequences and demonstrate that it favorably compares to state-of-the-art methods.Item Flower Reconstruction from a Single Photo(The Eurographics Association and John Wiley and Sons Ltd., 2014) Yan, Feilong; Gong, Minglun; Cohen-Or, Daniel; Deussen, Oliver; Chen, Baoquan; B. Levy and J. KautzWe present a semi-automatic method for reconstructing flower models from a single photograph. Such reconstruction is challenging since the 3D structure of a flower can appear ambiguous in projection. However, the flower head typically consists of petals embedded in 3D space that share similar shapes and form certain level of regular structure. Our technique employs these assumptions by first fitting a cone and subsequently a surface of revolution to the flower structure and then computing individual petal shapes from their projection in the photo. Flowers with multiple layers of petals are handled through processing different layers separately. Occlusions are dealt with both within and between petal layers. We show that our method allows users to quickly generate a variety of realistic 3D flowers from photographs and to animate an image using the underlying models reconstructed from our method.Item Efficient Enforcement of Hard Articulation Constraints in the Presence of Closed Loops and Contacts(The Eurographics Association and John Wiley and Sons Ltd., 2014) Tomcin, Robin; Sibbing, Dominik; Kobbelt, Leif; B. Levy and J. KautzIn rigid body simulation, one must distinguish between contacts (so-called unilateral constraints) and articulations (bilateral constraints). For contacts and friction, iterative solution methods have proven most useful for interactive applications, often in combination with Shock-Propagation in cases with strong interactions between contacts (such as stacks), prioritizing performance and plausibility over accuracy. For articulation constraints, direct solution methods are preferred, because one can rely on a factorization with linear time complexity for tree-like systems, even in ill-conditioned cases caused by large mass-ratios or high complexity. Despite recent advances, combining the advantages of direct and iterative solution methods wrt. performance has proven difficult and the intricacy of articulations in interactive applications is often limited by the convergence speed of the iterative solution method in the presence of closed kinematic loops (i.e. auxiliary constraints) and contacts. We identify common performance bottlenecks in the dynamic simulation of unilateral and bilateral constraints and are able to present a simulation method, that scales well in the number of constraints even in ill-conditioned cases with frictional contacts, collisions and closed loops in the kinematic graph. For cases where many joints are connected to a single body, we propose a technique to increase the sparsity of the positive definite linear system. A solution to these bottlenecks is presented in this paper to make the simulation of a wider range of mechanisms possible in real-time without extensive parameter tuning.