38-Issue 7
Permanent URI for this collection
Browse
Browsing 38-Issue 7 by Issue Date
Now showing 1 - 20 of 70
Results Per Page
Sort Options
Item Discrete Calabi Flow: A Unified Conformal Parameterization Method(The Eurographics Association and John Wiley & Sons Ltd., 2019) Su, Kehua; Li, Chenchen; Zhou, Yuming; Xu, Xu; Gu, Xianfeng; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonConformal parameterization for surfaces into various parameter domains is a fundamental task in computer graphics. Prior research on discrete Ricci flow provided us with promising inspirations from methods derived via Riemannian geometry, which is rigorous in theory and effective in practice. In this paper, we propose a unified conformal parameterization approach for turning triangle meshes into planar and spherical domains using discrete Calabi flow on piecewise linear metric. We incorporate edgeflipping surgery to guarantee convergence as well as other significant improvements including approximate Newton's method, optimal step-lengths, priority embedding and boundary customizing, which achieve better performance and functionality with robustness and accuracy.Item A PatchMatch-based Approach for Matte Propagation in Videos(The Eurographics Association and John Wiley & Sons Ltd., 2019) Backes, Marcos; Menezes de Oliveira Neto, Manuel; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonDespite considerable advances in natural image matting over the last decades, video matting still remains a difficult problem. The main challenges faced by existing methods are the large amount of user input required, and temporal inconsistencies in mattes between pairs of adjacent frames. We present a temporally-coherent matte-propagation method for videos based on PatchMatch and edge-aware filtering. Given an input video and trimaps for a few frames, including the first and last, our approach generates alpha mattes for all frames of the video sequence. We also present a user scribble-based interface for video matting that takes advantage of the efficiency of our method to interactively refine the matte results. We demonstrate the effectiveness of our approach by using it to generate temporally-coherent mattes for several natural video sequences. We perform quantitative comparisons against the state-of-the-art sparse-input video matting techniques and show that our method produces significantly better results according to three different metrics. We also perform qualitative comparisons against the state-of-the-art dense-input video matting techniques and show that our approach produces similar quality results while requiring only about 7% of the amount of user input required by such techniques. These results show that our method is both effective and user-friendly, outperforming state-of-the-art solutions.Item Procedural Riverscapes(The Eurographics Association and John Wiley & Sons Ltd., 2019) Peytavie, Adrien; Dupont, Thibault; Guérin, Eric; Cortial, Yann; Benes, Bedrich; Gain, James; Galin, Eric; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonThis paper addresses the problem of creating animated riverscapes through a novel procedural framework that generates the inscribing geometry of a river network and then synthesizes matching real-time water movement animation. Our approach takes bare-earth heightfields as input, derives hydrologically-inspired river network trajectories, carves riverbeds into the terrain, and then automatically generates a corresponding blend-flow tree for the water surface. Characteristics, such as the riverbed width, depth and shape, as well as elevation and flow of the fluid surface, are procedurally derived from the terrain and river type. The riverbed is inscribed by combining compactly supported elevation modifiers over the river course. Subsequently, the water surface is defined as a time-varying continuous function encoded as a blend-flow tree with leaves that are parameterized procedural flow primitives and internal nodes that are blend operators. While river generation is fully automated, we also incorporate intuitive interactive editing of both river trajectories and individual riverbed and flow primitives. The resulting framework enables the generation of a wide range of river forms, ranging from slow meandering rivers to rapids with churning water, including surface effects, such as foam and leaves carried downstream.Item Dual Illumination Estimation for Robust Exposure Correction(The Eurographics Association and John Wiley & Sons Ltd., 2019) Zhang, Qing; Nie, Yongwei; Zheng, Wei-Shi; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonExposure correction is one of the fundamental tasks in image processing and computational photography. While various methods have been proposed, they either fail to produce visually pleasing results, or only work well for limited types of image (e.g., underexposed images). In this paper, we present a novel automatic exposure correction method, which is able to robustly produce high-quality results for images of various exposure conditions (e.g., underexposed, overexposed, and partially under- and over-exposed). At the core of our approach is the proposed dual illumination estimation, where we separately cast the underand over-exposure correction as trivial illumination estimation of the input image and the inverted input image. By performing dual illumination estimation, we obtain two intermediate exposure correction results for the input image, with one fixes the underexposed regions and the other one restores the overexposed regions. A multi-exposure image fusion technique is then employed to adaptively blend the visually best exposed parts in the two intermediate exposure correction images and the input image into a globally well-exposed image. Experiments on a number of challenging images demonstrate the effectiveness of the proposed approach and its superiority over the state-of-the-art methods and popular automatic exposure correction tools.Item High Dynamic Range Point Clouds for Real-Time Relighting(The Eurographics Association and John Wiley & Sons Ltd., 2019) Sabbadin, Manuele; Palma, Gianpaolo; BANTERLE, FRANCESCO; Boubekeur, Tamy; Cignoni, Paolo; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonAcquired 3D point clouds make possible quick modeling of virtual scenes from the real world.With modern 3D capture pipelines, each point sample often comes with additional attributes such as normal vector and color response. Although rendering and processing such data has been extensively studied, little attention has been devoted using the light transport hidden in the recorded per-sample color response to relight virtual objects in visual effects (VFX) look-dev or augmented reality (AR) scenarios. Typically, standard relighting environment exploits global environment maps together with a collection of local light probes to reflect the light mood of the real scene on the virtual object. We propose instead a unified spatial approximation of the radiance and visibility relationships present in the scene, in the form of a colored point cloud. To do so, our method relies on two core components: High Dynamic Range (HDR) expansion and real-time Point-Based Global Illumination (PBGI). First, since an acquired color point cloud typically comes in Low Dynamic Range (LDR) format, we boost it using a single HDR photo exemplar of the captured scene that can cover part of it. We perform this expansion efficiently by first expanding the dynamic range of a set of renderings of the point cloud and then projecting these renderings on the original cloud. At this stage, we propagate the expansion to the regions not covered by the renderings or with low-quality dynamic range by solving a Poisson system. Then, at rendering time, we use the resulting HDR point cloud to relight virtual objects, providing a diffuse model of the indirect illumination propagated by the environment. To do so, we design a PBGI algorithm that exploits the GPU's geometry shader stage as well as a new mipmapping operator, tailored for G-buffers, to achieve real-time performances. As a result, our method can effectively relight virtual objects exhibiting diffuse and glossy physically-based materials in real time. Furthermore, it accounts for the spatial embedding of the object within the 3D environment. We evaluate our approach on manufactured scenes to assess the error introduced at every step from the perfect ground truth. We also report experiments with real captured data, covering a range of capture technologies, from active scanning to multiview stereo reconstruction.Item Learning to Trace: Expressive Line Drawing Generation from Photographs(The Eurographics Association and John Wiley & Sons Ltd., 2019) Inoue, Naoto; Ito, Daichi; Xu, Ning; Yang, Jimei; Price, Brian; Yamasaki, Toshihiko; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonIn this paper, we present a new computational method for automatically tracing high-resolution photographs to create expressive line drawings. We define expressive lines as those that convey important edges, shape contours, and large-scale texture lines that are necessary to accurately depict the overall structure of objects (similar to those found in technical drawings) while still being sparse and artistically pleasing. Given a photograph, our algorithm extracts expressive edges and creates a clean line drawing using a convolutional neural network (CNN). We employ an end-to-end trainable fully-convolutional CNN to learn the model in a data-driven manner. The model consists of two networks to cope with two sub-tasks; extracting coarse lines and refining them to be more clean and expressive. To build a model that is optimal for each domain, we construct two new datasets for face/body and manga background. The experimental results qualitatively and quantitatively demonstrate the effectiveness of our model. We further illustrate two practical applications.Item Rain Wiper: An Incremental RandomlyWired Network for Single Image Deraining(The Eurographics Association and John Wiley & Sons Ltd., 2019) Liang, Xiwen; Qiu, Bin; Su, Zhuo; Gao, Chengying; Shi, Xiaohong; Wang, Ruomei; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonSingle image rain removal is a challenging ill-posed problem due to various shapes and densities of rain streaks. We present a novel incremental randomly wired network (IRWN) for single image deraining. Different from previous methods, most structures of modules in IRWN are generated by a stochastic network generator based on the random graph theory, which ease the burden of manual design and further help to characterize more complex rain streaks. To decrease network parameters and extract more details efficiently, the image pyramid is fused via the multi-scale network structure. An incremental rectified loss is proposed to better remove rain streaks in different rain conditions and recover the texture information of target objects. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method outperforms the state-ofthe- art methods significantly. In addition, an ablation study is conducted to illustrate the improvements obtained by different modules and loss items in IRWN.Item A Color-Pair Based Approach for Accurate Color Harmony Estimation(The Eurographics Association and John Wiley & Sons Ltd., 2019) Yang, Bailin; Wei, Tianxiang; Fang, Xianyong; Deng, Zhigang; Li, Frederick W. B.; Ling, Yun; Wang, Xun; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonHarmonious color combinations can stimulate positive user emotional responses. However, a widely open research question is: how can we establish a robust and accurate color harmony measure for the public and professional designers to identify the harmony level of a color theme or color set. Building upon the key discovery that color pairs play an important role in harmony estimation, in this paper we present a novel color-pair based estimation model to accurately measure the color harmony. It first takes a two-layer maximum likelihood estimation (MLE) based method to compute an initial prediction of color harmony by statistically modeling the pair-wise color preferences from existing datasets. Then, the initial scores are refined through a back-propagation neural network (BPNN) with a variety of color features extracted in different color spaces, so that an accurate harmony estimation can be obtained at the end. Our extensive experiments, including performance comparisons of harmony estimation applications, show the advantages of our method in comparison with the state of the art methods.Item Surface Fairing towards Regular Principal Curvature Line Networks(The Eurographics Association and John Wiley & Sons Ltd., 2019) Chu, Lei; Bo, Pengbo; Liu, Yang; Wang, Wenping; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonFreeform surfaces whose principal curvature line network is regularly distributed, are essential to many real applications like CAD modeling, architecture design, and industrial fabrication. However, most designed surfaces do not hold this nice property because it is hard to enforce such constraints in the design process. In this paper, we present a novel method for surface fairing which takes a regular distribution of the principal curvature line network on a surface as an objective. Our method first removes the high-frequency signals from the curvature tensor field of an input freeform surface by a novel rolling guidance tensor filter, which results in a more regular and smooth curvature tensor field, then deforms the input surface to match the smoothed field as much as possible. As an application, we solve the problem of approximating freeform surfaces with regular principal curvature line networks, discretized by quadrilateral meshes. By introducing the circular or conical conditions on the quadrilateral mesh to guarantee the existence of discrete principal curvature line networks, and minimizing the approximate error to the original surface and improving the fairness of the quad mesh, we obtain a regular discrete principal curvature line network that approximates the original surface. We evaluate the efficacy of our method on various freeform surfaces and demonstrate the superiority of the rolling guidance tensor filter over other tensor smoothing techniques. We also utilize our method to generate high-quality circular/conical meshes for architecture design and cyclide spline surfaces for CAD modeling.Item Computing Surface PolyCube-Maps by Constrained Voxelization(The Eurographics Association and John Wiley & Sons Ltd., 2019) Yang, Yang; Fu, Xiao-Ming; Liu, Ligang; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonWe present a novel method to compute bijective PolyCube-maps with low isometric distortion. Given a surface and its preaxis- aligned shape that is not an exact PolyCube shape, the algorithm contains two steps: (i) construct a PolyCube shape to approximate the pre-axis-aligned shape; and (ii) generate a bijective, low isometric distortion mapping between the constructed PolyCube shape and the input surface. The PolyCube construction is formulated as a constrained optimization problem, where the objective is the number of corners in the constructed PolyCube, and the constraint is to bound the approximation error between the constructed PolyCube and the input pre-axis-aligned shape while ensuring topological validity. A novel erasing-and-filling solver is proposed to solve this challenging problem. Centeral to the algorithm for computing bijective PolyCube-maps is a quad mesh optimization process that projects the constructed PolyCube onto the input surface with high-quality quads. We demonstrate the efficacy of our algorithm on a data set containing 300 closed meshes. Compared to state-of-the-art methods, our method achieves higher practical robustness and lower mapping distortion.Item Selecting Texture Resolution Using a Task-specific Visibility Metric(The Eurographics Association and John Wiley & Sons Ltd., 2019) Wolski, Krzysztof; Giunchi, Daniele; Kinuwaki, Shinichi; Didyk, Piotr; Myszkowski, Karol; Steed, Anthony; Mantiuk, Rafal K.; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonIn real-time rendering, the appearance of scenes is greatly affected by the quality and resolution of the textures used for image synthesis. At the same time, the size of textures determines the performance and the memory requirements of rendering. As a result, finding the optimal texture resolution is critical, but also a non-trivial task since the visibility of texture imperfections depends on underlying geometry, illumination, interactions between several texture maps, and viewing positions. Ideally, we would like to automate the task with a visibility metric, which could predict the optimal texture resolution. To maximize the performance of such a metric, it should be trained on a given task. This, however, requires sufficient user data which is often difficult to obtain. To address this problem, we develop a procedure for training an image visibility metric for a specific task while reducing the effort required to collect new data. The procedure involves generating a large dataset using an existing visibility metric followed by refining that dataset with the help of an efficient perceptual experiment. Then, such a refined dataset is used to retune the metric. This way, we augment sparse perceptual data to a large number of per-pixel annotated visibility maps which serve as the training data for application-specific visibility metrics. While our approach is general and can be potentially applied for different image distortions, we demonstrate an application in a game-engine where we optimize the resolution of various textures, such as albedo and normal maps.Item A Rigging-Skinning Scheme to Control Fluid Simulation(The Eurographics Association and John Wiley & Sons Ltd., 2019) Lu, Jia-Ming; Chen, Xiao-Song; Yan, Xiao; Li, Chen-Feng; Lin, Ming; Hu, Shi-Min; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonInspired by skeletal animation, a novel rigging-skinning flow control scheme is proposed to animate fluids intuitively and efficiently. The new animation pipeline creates fluid animation via two steps: fluid rigging and fluid skinning. The fluid rig is defined by a point cloud with rigid-body movement and incompressible deformation, whose time series can be intuitively specified by a rigid body motion and a constrained free-form deformation, respectively. The fluid skin generates plausible fluid flows by virtually fluidizing the point-cloud fluid rig with adjustable zero- and first-order flow features and at fixed computational cost. Fluid rigging allows the animator to conveniently specify the desired low-frequency flow motion through intuitive manipulations of a point cloud, while fluid skinning truthfully and efficiently converts the motion specified on the fluid rig into plausible flows of the animation fluid, with adjustable fine-scale effects. Besides being intuitive, the rigging-skinning scheme for fluid animation is robust and highly efficient, avoiding completely iterative trials or time-consuming nonlinear optimization. It is also versatile, supporting both particle- and grid- based fluid solvers. A series of examples including liquid, gas and mixed scenes are presented to demonstrate the performance of the new animation pipeline.Item Interactive Curation of Datasets for Training and Refining Generative Models(The Eurographics Association and John Wiley & Sons Ltd., 2019) Ye, Wenjie; Dong, Yue; Peers, Pieter; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonWe present a novel interactive learning-based method for curating datasets using user-defined criteria for training and refining Generative Adversarial Networks. We employ a novel batch-mode active learning strategy to progressively select small batches of candidate exemplars for which the user is asked to indicate whether they match the, possibly subjective, selection criteria. After each batch, a classifier that models the user's intent is refined and subsequently used to select the next batch of candidates. After the selection process ends, the final classifier, trained with limited but adaptively selected training data, is used to sift through the large collection of input exemplars to extract a sufficiently large subset for training or refining the generative model that matches the user's selection criteria. A key distinguishing feature of our system is that we do not assume that the user can always make a firm binary decision (i.e., ''meets'' or ''does not meet'' the selection criteria) for each candidate exemplar, and we allow the user to label an exemplar as ''undecided''. We rely on a non-binary query-by-committee strategy to distinguish between the user's uncertainty and the trained classifier's uncertainty, and develop a novel disagreement distance metric to encourage a diverse candidate set. In addition, a number of optimization strategies are employed to achieve an interactive experience. We demonstrate our interactive curation system on several applications related to training or refining generative models: training a Generative Adversarial Network that meets a user-defined criteria, adjusting the output distribution of an existing generative model, and removing unwanted samples from a generative model.Item Learning Explicit Smoothing Kernels for Joint Image Filtering(The Eurographics Association and John Wiley & Sons Ltd., 2019) Fang, Xiaonan; Wang, Miao; Shamir, Ariel; Hu, Shi-Min; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonSmoothing noises while preserving strong edges in images is an important problem in image processing. Image smoothing filters can be either explicit (based on local weighted average) or implicit (based on global optimization). Implicit methods are usually time-consuming and cannot be applied to joint image filtering tasks, i.e., leveraging the structural information of a guidance image to filter a target image.Previous deep learning based image smoothing filters are all implicit and unavailable for joint filtering. In this paper, we propose to learn explicit guidance feature maps as well as offset maps from the guidance image and smoothing parameter that can be utilized to smooth the input itself or to filter images in other target domains. We design a deep convolutional neural network consisting of a fully-convolution block for guidance and offset maps extraction together with a stacked spatially varying deformable convolution block for joint image filtering. Our models can approximate several representative image smoothing filters with high accuracy comparable to state-of-the-art methods, and serve as general tools for other joint image filtering tasks, such as color interpolation, depth map upsampling, saliency map upsampling, flash/non-flash image denoising and RGB/NIR image denoising.Item Compacting Voxelized Polyhedra via Tree Stacking(The Eurographics Association and John Wiley & Sons Ltd., 2019) Hao, Yue; Lien, Jyh-Ming; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonVolume compaction is a geometric problem that aims to reduce the volume of a polyhedron via shape transform. Compactable structures are easier to transport and in some cases easier to manufacture, therefore, they are commonly found in our daily life (e.g. collapsible containers) and advanced technology industries (e.g., the recent launch of 60 Starlink satellites compacted in a single rocket by SpaceX). It is known in the literature that finding a universal solution to compact an arbitrary 3D shape is computationally challenging. Previous approaches showed that stripifying mesh surface can lead to optimal compaction, but the resulting structures were often impractical. In this paper, we propose an algorithm that cuts the 3D orthogonal polyhedron, tessellated by thick square panels, into a tree structure that can be transformed into compact piles by folding and stacking. We call this process tree stacking. Our research found that it is possible to decompose the problem into a pipeline of several solvable local optimizations. We also provide an efficient algorithm to check if the solution exists by avoiding the computational bottleneck of the pipeline. Our results show that tree stacking can efficiently generate stackable structures that have better folding accuracy and similar compactness comparing to the most compact stacking using strips.Item Naturalness-Preserving Image Tone Enhancement Using Generative Adversarial Networks(The Eurographics Association and John Wiley & Sons Ltd., 2019) Son, Hyeongseok; Lee, Gunhee; Cho, Sunghyun; Lee, Seungyong; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonThis paper proposes a deep learning-based image tone enhancement approach that can maximally enhance the tone of an image while preserving the naturalness. Our approach does not require carefully generated ground-truth images by human experts for training. Instead, we train a deep neural network to mimic the behavior of a previous classical filtering method that produces drastic but possibly unnatural-looking tone enhancement results. To preserve the naturalness, we adopt the generative adversarial network (GAN) framework as a regularizer for the naturalness. To suppress artifacts caused by the generative nature of the GAN framework, we also propose an imbalanced cycle-consistency loss. Experimental results show that our approach can effectively enhance the tone and contrast of an image while preserving the naturalness compared to previous state-of-the-art approaches.Item Offline Deep Importance Sampling for Monte Carlo Path Tracing(The Eurographics Association and John Wiley & Sons Ltd., 2019) Bako, Steve; Meyer, Mark; DeRose, Tony; Sen, Pradeep; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonAlthough modern path tracers are successfully being applied to many rendering applications, there is considerable interest to push them towards ever-decreasing sampling rates. As the sampling rate is substantially reduced, however, even Monte Carlo (MC) denoisers-which have been very successful at removing large amounts of noise-typically do not produce acceptable final results. As an orthogonal approach to this, we believe that good importance sampling of paths is critical for producing betterconverged, path-traced images at low sample counts that can then, for example, be more effectively denoised. However, most recent importance-sampling techniques for guiding path tracing (an area known as ''path guiding'') involve expensive online (per-scene) training and offer benefits only at high sample counts. In this paper, we propose an offline, scene-independent deeplearning approach that can importance sample first-bounce light paths for general scenes without the need of the costly online training, and can start guiding path sampling with as little as 1 sample per pixel. Instead of learning to ''overfit'' to the sampling distribution of a specific scene like most previous work, our data-driven approach is trained a priori on a set of training scenes on how to use a local neighborhood of samples with additional feature information to reconstruct the full incident radiance at a point in the scene, which enables first-bounce importance sampling for new test scenes. Our solution is easy to integrate into existing rendering pipelines without the need for retraining, as we demonstrate by incorporating it into both the Blender/Cycles and Mitsuba path tracers. Finally, we show how our offline, deep importance sampler (ODIS) increases convergence at low sample counts and improves the results of an off-the-shelf denoiser relative to other state-of-the-art sampling techniques.Item Light Field Video Compression and Real Time Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2019) Hajisharif, Saghi; Miandji, Ehsan; Larsson, Per; Tran, Kiet; Unger, Jonas; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonLight field imaging is rapidly becoming an established method for generating flexible image based description of scene appearances. Compared to classical 2D imaging techniques, the angular information included in light fields enables effects such as post-capture refocusing and the exploration of the scene from different vantage points. In this paper, we describe a novel GPU pipeline for compression and real-time rendering of light field videos with full parallax. To achieve this, we employ a dictionary learning approach and train an ensemble of dictionaries capable of efficiently representing light field video data using highly sparse coefficient sets. A novel, key element in our representation is that we simultaneously compress both image data (pixel colors) and the auxiliary information (depth, disparity, or optical flow) required for view interpolation. During playback, the coefficients are streamed to the GPU where the light field and the auxiliary information are reconstructed using the dictionary ensemble and view interpolation is performed. In order to realize the pipeline we present several technical contributions including a denoising scheme enhancing the sparsity in the dataset which enables higher compression ratios, and a novel pruning strategy which reduces the size of the dictionary ensemble and leads to significant reductions in computational complexity during the encoding of a light field. Our approach is independent of the light field parameterization and can be used with data from any light field video capture system. To demonstrate the usefulness of our pipeline, we utilize various publicly available light field video datasets and discuss the medical application of documenting heart surgery.Item Learning Style Compatibility Between Objects in a Real-World 3D Asset Database(The Eurographics Association and John Wiley & Sons Ltd., 2019) Liu, Yifan; Tang, Ruolan; Ritchie, Daniel; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonLarge 3D asset databases are critical for designing virtual worlds, and using them effectively requires techniques for efficient querying and navigation. One important form of query is search by style compatibility: given a query object, find others that would be visually compatible if used in the same scene. In this paper, we present a scalable, learning-based approach for solving this problem which is designed for use with real-world 3D asset databases; we conduct experiments on 121 3D asset packages containing around 4000 3D objects from the Unity Asset Store. By leveraging the structure of the object packages, we introduce a technique to synthesize training labels for metric learning that work as well as human labels. These labels can grow exponentially with the number of objects, allowing our approach to scale to large real-world 3D asset databases without the need for expensive human training labels. We use these synthetic training labels in a metric learning model that analyzes the in-engine rendered appearance of an object—-combining geometry, material, and texture-whereas prior work considers only object geometry, or disjoint geometry and texture features. Through an ablation experiment, we find that using this representation yields better results than using renders which lack texture, materiality, or both.Item Reliable Rolling-guided Point Normal Filtering for Surface Texture Removal(The Eurographics Association and John Wiley & Sons Ltd., 2019) Sun, Yangxing; Chen, Honghua; Qin, Jing; Li, Hongwei; Wei, Mingqiang; Zong, Hua; Lee, Jehee and Theobalt, Christian and Wetzstein, GordonSemantic surface decomposition (SSD) facilitates various geometry processing and product re-design tasks. Filter-based techniques are meaningful and widely used to achieve the SSD, which however often leads to surface either under-fitting or overfitting. In this paper, we propose a reliable rolling-guided point normal filtering method to decompose textures from a captured point cloud surface. Our method is built on the geometry assumption that 3D surfaces are comprised of an underlying shape (US) and a variety of bump ups and downs (BUDs) on the US. We have three core contributions. First, by considering the BUDs as surface textures, we present a RANSAC-based sub-neighborhood detection scheme to distinguish the US and the textures. Second, to better preserve the US (especially the prominent structures), we introduce a patch shift scheme to estimate the guidance normal for feeding the rolling-guided filter. Third, we formulate a new position updating scheme to alleviate the common uneven distribution of points. Both visual and numerical experiments demonstrate that our method is comparable to state-of-the-art methods in terms of the robustness of texture removal and the effectiveness of the underlying shape preservation.