39-Issue 3
Permanent URI for this collection
Browse
Browsing 39-Issue 3 by Issue Date
Now showing 1 - 20 of 49
Results Per Page
Sort Options
Item Representative Isovalue Detection and Isosurface Segmentation Using Novel Isosurface Measures(The Eurographics Association and John Wiley & Sons Ltd., 2020) Wang, Cuilan; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaInterval volume is the volume of the region between two isosurfaces. This paper proposes a novel measure, called VOA measure, that is computed based on interval volume and isosurface area. This measure represents the rate of change of distance between isosurfaces with respect to isovalue. It can be used to detect representative isovalues of the dataset since two isosurfaces near material boundaries tend to be much closer to each other than two isosurfaces in material interiors, assuming they have the same isovalue difference. For the same isosurface, some portion of it may pass through the boundary of two materials and some portion of it may pass through the interior of a material. To separate the portions of an isosurface that represent different features of the dataset, another novel isosurface measure is introduced. This measure is calculated based on the Euclidean distance of individual sample points on two isosurfaces. The effectiveness of the two new measures in detecting significant isovalues and segmenting isosurfaces are demonstrated in the paper.Item Metro Maps on Octilinear Grid Graphs(The Eurographics Association and John Wiley & Sons Ltd., 2020) Bast, Hannah; Brosi, Patrick; Storandt, Sabine; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaSchematic transit maps (often called "metro maps" in the literature) are important to produce comprehensible visualizations of complex public transit networks. In this work, we investigate the problem of automatically drawing such maps on an octilinear grid with an arbitrary (but optimal) number of edge bends. Our approach can naturally deal with obstacles that should be respected in the final drawing (points of interest, rivers, coastlines) and can prefer grid edges near the real-world course of a line. This allows our drawings to be combined with existing maps, for example as overlays in map services. We formulate an integer linear program which can be used to solve the problem exactly. We also provide a fast approximation algorithm which greedily calculates shortest paths between node candidates on the underlying octilinear grid graph. Previous work used local search techniques to update node positions until a local optimum was found, but without guaranteeing octilinearity. We can thus calculate nearly optimal metro maps in a fraction of a second even for complex networks, enabling the interactive use of our method in map editors.Item Resolving Conflicting Insights in Asynchronous Collaborative Visual Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2020) Li, Jianping Kelvin; Xu, Shenyu; Ye, Yecong (Chris); Ma, Kwan-Liu; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaAnalyzing large and complex datasets for critical decision making can benefit from a collective effort involving a team of analysts. However, insights and findings from different analysts are often incomplete, disconnected, or even conflicting. Most existing analysis tools lack proper support for examining and resolving the conflicts among the findings in order to consolidate the results of collaborative data analysis. In this paper, we present CoVA, a visual analytics system incorporating conflict detection and resolution for supporting asynchronous collaborative data analysis. By using a declarative visualization language and graph representation for managing insights and insight provenance, CoVA effectively leverages distributed revision control workflow from software engineering to automatically detect and properly resolve conflicts in collaborative analysis results. In addition, CoVA provides an effective visual interface for resolving conflicts as well as combining the analysis results. We conduct a user study to evaluate CoVA for collaborative data analysis. The results show that CoVA allows better understanding and use of the findings from different analysts.Item Reading Traces: Scalable Exploration in Elastic Visualizations of Cultural Heritage Data(The Eurographics Association and John Wiley & Sons Ltd., 2020) Bludau, Mark-Jan; Brüggemann, Viktoria; Busch, Anna; Dörk, Marian; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaThrough a design study, we develop an approach to data exploration that utilizes elastic visualizations designed to support varying degrees of detail and abstraction. Examining the notions of scalability and elasticity in interactive visualizations, we introduce a visualization of personal reading traces such as marginalia or markings inside the reference library of German realist author Theodor Fontane. To explore such a rich and extensive collection, meaningful visual forms of abstraction and detail are as important as the transitions between those states. Following a growing research interest in the role of fluid interactivity and animations between views, we are particularly interested in the potential of carefully designed transitions and consistent representations across scales. The resulting prototype addresses humanistic research questions about the interplay of distant and close reading with visualization research on continuous navigation along several granularity levels, using scrolling as one of the main interaction mechanisms. In addition to presenting the design process and resulting prototype, we present findings from a qualitative evaluation of the tool, which suggest that bridging between distant and close views can enhance exploration, but that transitions between views need to be crafted very carefully to facilitate comprehension.Item Quantitative Comparison of Time-Dependent Treemaps(The Eurographics Association and John Wiley & Sons Ltd., 2020) Vernier, Eduardo; Sondag, Max; Comba, João; Speckmann, Bettina; Telea, Alexandru; Verbeek, Kevin; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaRectangular treemaps are often the method of choice to visualize large hierarchical datasets. Nowadays such datasets are available over time, hence there is a need for (a) treemaps that can handle time-dependent data, and (b) corresponding quality criteria that cover both a treemap's visual quality and its stability over time. In recent years a wide variety of (stable) treemapping algorithms has been proposed, with various advantages and limitations. We aim to provide insights to researchers and practitioners to allow them to make an informed choice when selecting a treemapping algorithm for specific applications and data. To this end, we perform an extensive quantitative evaluation of rectangular treemaps for time-dependent data. As part of this evaluation we propose a novel classification scheme for time-dependent datasets. Specifically, we observe that the performance of treemapping algorithms depends on the characteristics of the datasets used. We identify four potential representative features that characterize time-dependent hierarchical datasets and classify all datasets used in our experiments accordingly. We experimentally test the validity of this classification on more than 2000 datasets, and analyze the relative performance of 14 state-of-the-art rectangular treemapping algorithms across varying features. Finally, we visually summarize our results with respect to both visual quality and stability to aid users in making an informed choice among treemapping algorithms. All datasets, metrics, and algorithms are openly available to facilitate reuse and further comparative studies.Item WarehouseVis: A Visual Analytics Approach to Facilitating Warehouse Location Selection for Business Districts(The Eurographics Association and John Wiley & Sons Ltd., 2020) Li, Quan; Liu, Qiangqiang; Tang, Chunfeng; Li, Zhiwei; Wei, Shuaichao; Peng, Xianrui; Zheng, Minghua; Chen, Tianjian; Yang, Qiang; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaSelecting a proper warehouse location serving to satisfy the demands of the goods from a certain business area is important to a successful retail business. However, the large solution space, uncertain traffic conditions, and varying business preferences impose great challenges on warehouse location selection. Conventional approaches mainly summarize relevant evaluation criteria and compile them into an analysis report to facilitate rapid data absorption but fail to support a comprehensive and joint decision-making process in warehouse location selection. In this paper, we propose a visual analytics approach to facilitating warehouse location selection. We first visually centralize relevant information of warehouses and adapts a widely-used methodology to efficiently rank warehouse candidates. We then design a delivering estimation model based on massive logistics trajectories to resolve the uncertainty issue of traffic conditions of warehouses. Based on these techniques, an interactive framework is proposed to generate and explore the candidate warehouses. We conduct a case study and a within-subject study with baseline systems to assess the efficacy of our system. Experts' feedback also suggests that our approach indeed helps them better tackle the problem of finding an ideal warehouse in the field of retail logistics management.Item Classifier-Guided Visual Correction of Noisy Labels for Image Classification Tasks(The Eurographics Association and John Wiley & Sons Ltd., 2020) Bäuerle, Alex; Neumann, Heiko; Ropinski, Timo; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaTraining data plays an essential role in modern applications of machine learning. However, gathering labeled training data is time-consuming. Therefore, labeling is often outsourced to less experienced users, or completely automated. This can introduce errors, which compromise valuable training data, and lead to suboptimal training results. We thus propose a novel approach that uses the power of pretrained classifiers to visually guide users to noisy labels, and let them interactively check error candidates, to iteratively improve the training data set. To systematically investigate training data, we propose a categorization of labeling errors into three different types, based on an analysis of potential pitfalls in label acquisition processes. For each of these types, we present approaches to detect, reason about, and resolve error candidates, as we propose measures and visual guidance techniques to support machine learning users. Our approach has been used to spot errors in well-known machine learning benchmark data sets, and we tested its usability during a user evaluation. While initially developed for images, the techniques presented in this paper are independent of the classification algorithm, and can also be extended to many other types of training data.Item PAVED: Pareto Front Visualization for Engineering Design(The Eurographics Association and John Wiley & Sons Ltd., 2020) Cibulski, Lena; Mitterhofer, Hubert; May, Thorsten; Kohlhammer, Jörn; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaDesign problems in engineering typically involve a large solution space and several potentially conflicting criteria. Selecting a compromise solution is often supported by optimization algorithms that compute hundreds of Pareto-optimal solutions, thus informing a decision by the engineer. However, the complexity of evaluating and comparing alternatives increases with the number of criteria that need to be considered at the same time. We present a design study on Pareto front visualization to support engineers in applying their expertise and subjective preferences for selection of the most-preferred solution. We provide a characterization of data and tasks from the parametric design of electric motors. The requirements identified were the basis for our development of PAVED, an interactive parallel coordinates visualization for exploration of multi-criteria alternatives. We reflect on our user-centered design process that included iterative refinement with real data in close collaboration with a domain expert as well as a summative evaluation in the field. The results suggest a high usability of our visualization as part of a real-world engineering design workflow. Our lessons learned can serve as guidance to future visualization developers targeting multi-criteria optimization problems in engineering design or alternative domains.Item Augmenting Node-Link Diagrams with Topographic Attribute Maps(The Eurographics Association and John Wiley & Sons Ltd., 2020) Preiner, Reinhold; Schmidt, Johanna; Krösl, Katharina; Schreck, Tobias; Mistelbauer, Gabriel; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaWe propose a novel visualization technique for graphs that are attributed with scalar data. In many scenarios, these attributes (e.g., birth date in a family network) provide ambient context information for the graph structure, whose consideration is important for different visual graph analysis tasks. Graph attributes are usually conveyed using different visual representations (e.g., color, size, shape) or by reordering the graph structure according to the attribute domain (e.g., timelines). While visual encodings allow graphs to be arranged in a readable layout, assessing contextual information such as the relative similarities of attributes across the graph is often cumbersome. In contrast, attribute-based graph reordering serves the comparison task of attributes, but typically strongly impairs the readability of the structural information given by the graph's topology. In this work, we augment force-directed node-link diagrams with a continuous ambient representation of the attribute context. This way, we provide a consistent overview of the graph's topological structure as well as its attributes, supporting a wide range of graph-related analysis tasks. We resort to an intuitive height field metaphor, illustrated by a topographic map rendering using contour lines and suitable color maps. Contour lines visually connect nodes of similar attribute values, and depict their relative arrangement within the global context. Moreover, our contextual representation supports visualizing attribute value ranges associated with graph nodes (e.g., lifespans in a family network) as trajectories routed through this height field. We discuss how user interaction with both the structural and the contextual information fosters exploratory graph analysis tasks. The effectiveness and versatility of our technique is confirmed in a user study and case studies from various application domains.Item Extraction of Distinguished Hyperbolic Trajectories for 2D Time-Dependent Vector Field Topology(The Eurographics Association and John Wiley & Sons Ltd., 2020) Hofmann, Lutz; Sadlo, Filip; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaThis paper does two main contributions to 2D time-dependent vector field topology. First, we present a technique for robust, accurate, and efficient extraction of distinguished hyperbolic trajectories (DHT), the generative structures of 2D time-dependent vector field topology. It is based on refinement of initial candidate curves. In contrast to previous approaches, it is robust because the refinement converges for reasonably close initial candidates, it is accurate due to its adaptive scheme, and it is efficient due to its high convergence speed. Second, we provide a detailed evaluation and discussion of previous approaches for the extraction of DHTs and time-dependent vector field topology in general. We demonstrate the utility of our approach using analytical flows, as well as data from computational fluid dynamics.Item Visual Analysis of the Finite-Time Lyapunov Exponent(The Eurographics Association and John Wiley & Sons Ltd., 2020) Sagristà, Antoni; Jordan, Stefan; Sadlo, Filip; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaIn this paper, we present an integrated visual analytics approach to support the parametrization and exploration of flow visualization based on the finite-time Lyapunov exponent. Such visualization of time-dependent flow faces various challenges, including the choice of appropriate advection times, temporal regions of interest, and spatial resolution. Our approach eases these challenges by providing the user with context by means of parametric aggregations, with support and guidance for a more directed exploration, and with a set of derived measures for better qualitative assessment. We demonstrate the utility of our approach with examples from computation fluid dynamics and time-dependent dynamical systems.Item DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning(The Eurographics Association and John Wiley & Sons Ltd., 2020) Jaunet, Theo; Vuillemot, Romain; Wolf, Christian; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaWe present DRLViz, a visual analytics interface to interpret the internal memory of an agent (e.g. a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated when the agent moves in an environment and is not trivial to understand due to the number of dimensions, dependencies to past vectors, spatial/temporal correlations, and co-correlation between dimensions. It is often referred to as a black box as only inputs (images) and outputs (actions) are intelligible for humans. Using DRLViz, experts are assisted to interpret decisions using memory reduction interactions, and to investigate the role of parts of the memory when errors have been made (e.g. wrong direction). We report on DRLViz applied in the context of video games simulators (ViZDoom) for a navigation scenario with item gathering tasks. We also report on experts evaluation using DRLViz, and applicability of DRLViz to other scenarios and navigation problems beyond simulation games, as well as its contribution to black box models interpretability and explain-ability in the field of visual analytics.Item Sublinear Time Force Computation for Big Complex Network Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2020) Meidiana, Amyra; Hong, Seok-Hee; Torkel, Marnijati; Cai, Shijun; Eades, Peter; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaIn this paper, we present a new framework for sublinear time force computation for visualization of big complex graphs. Our algorithm is based on the sampling of vertices for computing repulsion forces and edge sparsification for attraction force computation. More specifically, for vertex sampling, we present three types of sampling algorithms, including random sampling, geometric sampling, and combinatorial sampling, to reduce the repulsion force computation to sublinear in the number of vertices. We utilize a spectral sparsification approach to reduce the number of attraction force computations to sublinear in the number of edges for dense graphs. We also present a smart initialization method based on radial tree drawing of the BFS spanning tree rooted at the center. Experiments show that our new sublinear time force computation algorithms run quite fast, while producing good visualization of large and complex networks, with significant improvements in quality metrics such as shape-based and edge crossing metrics.Item Canis: A High-Level Language for Data-Driven Chart Animations(The Eurographics Association and John Wiley & Sons Ltd., 2020) Ge, Tong; Zhao, Yue; Lee, Bongshin; Ren, Donghao; Chen, Baoquan; Wang, Yunhai; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaIn this paper, we introduce Canis, a high-level domain-specific language that enables declarative specifications of data-driven chart animations. By leveraging data-enriched SVG charts, its grammar of animations can be applied to the charts created by existing chart construction tools. With Canis, designers can select marks from the charts, partition the selected marks into mark units based on data attributes, and apply animation effects to the mark units, with the control of when the effects start. The Canis compiler automatically synthesizes the Lottie animation JSON files [Aira], which can be rendered natively across multiple platforms. To demonstrate Canis' expressiveness, we present a wide range of chart animations. We also evaluate its scalability by showing the effectiveness of our compiler in reducing the output specification size and comparing its performance on different platforms against D3.Item GTMapLens: Interactive Lens for Geo-Text Data Browsing on Map(The Eurographics Association and John Wiley & Sons Ltd., 2020) Ma, Chao; Zhao, Ye; AL-Dohuki, Shamal; Yang, Jing; Ye, Xinyue; Kamw, Farah; Amiruzzaman, Md; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaData containing geospatial semantics, such as geotagged tweets, travel blogs, and crime reports, associates natural language texts with geographical locations. This paper presents a lens-based visual interaction technique, GTMapLens, to flexibly browse the geo-text data on a map. It allows users to perform dynamic focus+context exploration by using movable lenses to browse geographical regions, find locations of interest, and perform comparative and drill-down studies. Geo-text data is visualized in a way that users can easily perceive the underlying geospatial semantics along with lens moving. Based on a requirement analysis with a cohort of multidisciplinary domain experts, a set of lens interaction techniques are developed including keywords control, path management, context visualization, and snapshot anchors. They allow users to achieve a guided and controllable exploration of geo-text data. A hierarchical data model enables the interactive lens operations by accelerated data retrieval from a geo-text database. Evaluation with real-world datasets is presented to show the usability and effectiveness of GTMapLens.Item QUESTO: Interactive Construction of Objective Functions for Classification Tasks(The Eurographics Association and John Wiley & Sons Ltd., 2020) Das, Subhajit; Xu, Shenyu; Gleicher, Michael; Chang, Remco; Endert, Alex; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaBuilding effective classifiers requires providing the modeling algorithms with information about the training data and modeling goals in order to create a model that makes proper tradeoffs. Machine learning algorithms allow for flexible specification of such meta-information through the design of the objective functions that they solve. However, such objective functions are hard for users to specify as they are a specific mathematical formulation of their intents. In this paper, we present an approach that allows users to generate objective functions for classification problems through an interactive visual interface. Our approach adopts a semantic interaction design in that user interactions over data elements in the visualization are translated into objective function terms. The generated objective functions are solved by a machine learning solver that provides candidate models, which can be inspected by the user, and used to suggest refinements to the specifications. We demonstrate a visual analytics system QUESTO for users to manipulate objective functions to define domain-specific constraints. Through a user study we show that QUESTO helps users create various objective functions that satisfy their goals.Item SeqDynamics: Visual Analytics for Evaluating Online Problem-solving Dynamics(The Eurographics Association and John Wiley & Sons Ltd., 2020) Xia, Meng; Xu, Min; Lin, Chuan-en; Cheng, Ta Ying; Qu, Huamin; Ma, Xiaojuan; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaProblem-solving dynamics refers to the process of solving a series of problems over time, from which a student's cognitive skills and non-cognitive traits and behaviors can be inferred. For example, we can derive a student's learning curve (an indicator of cognitive skill) from the changes in the difficulty level of problems solved, or derive a student's self-regulation patterns (an example of non-cognitive traits and behaviors) based on the problem-solving frequency over time. Few studies provide an integrated overview of both aspects by unfolding the problem-solving process. In this paper, we present a visual analytics system named SeqDynamics that evaluates students' problem-solving dynamics from both cognitive and non-cognitive perspectives. The system visualizes the chronological sequence of learners' problem-solving behavior through a set of novel visual designs and coordinated contextual views, enabling users to compare and evaluate problem-solving dynamics on multiple scales. We present three scenarios to demonstrate the usefulness of SeqDynamics on a real-world dataset which consists of thousands of problem-solving traces. We also conduct five expert interviews to show that SeqDynamics enhances domain experts' understanding of learning behavior sequences and assists them in completing evaluation tasks efficiently.Item Ocupado: Visualizing Location-Based Counts Over Time Across Buildings(The Eurographics Association and John Wiley & Sons Ltd., 2020) Oppermann, Michael; Munzner, Tamara; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaUnderstanding how spaces in buildings are being used is vital for optimizing space utilization, for improving resource allocation, and for the design of new facilities. We present a multi-year design study that resulted in Ocupado, a set of visual decision-support tools centered around occupancy data for stakeholders in facilities management and planning. Ocupado uses WiFi devices as a proxy for human presence, capturing location-based counts that preserve privacy without trajectories. We contribute data and task abstractions for studying space utilization for combinations of data granularities in both space and time. In addition, we contribute generalizable design choices for visualizing location-based counts relating to indoor environments. We provide evidence of Ocupado's utility through multiple analysis scenarios with real-world data refined through extensive stakeholder feedback, and discussion of its take-up by our industry partner.Item Understanding the Design Space and Authoring Paradigms for Animated Data Graphics(The Eurographics Association and John Wiley & Sons Ltd., 2020) Thompson, John R.; Liu, Zhicheng; Li, Wilmot; Stasko, John; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaCreating expressive animated data graphics often requires designers to possess highly specialized programming skills. Alternatively, the use of direct manipulation tools is popular among animation designers, but these tools have limited support for generating graphics driven by data. Our goal is to inform the design of next-generation animated data graphic authoring tools. To understand the composition of animated data graphics, we survey real-world examples and contribute a description of the design space. We characterize animated transitions based on object, graphic, data, and timing dimensions. We synthesize the primitives from the object, graphic, and data dimensions as a set of 10 transition types, and describe how timing primitives compose broader pacing techniques. We then conduct an ideation study that uncovers how people approach animation creation with three authoring paradigms: keyframe animation, procedural animation, and presets & templates. Our analysis shows that designers have an overall preference for keyframe animation. However, we find evidence that an authoring tool should combine these three paradigms as designers' preferences depend on the characteristics of the animated transition design and the authoring task. Based on these findings, we contribute guidelines and design considerations for developing future animated data graphic authoring tools.Item MotionGlyphs: Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior(The Eurographics Association and John Wiley & Sons Ltd., 2020) Cakmak, Eren; Schäfer, Hanna; Buchmüller, Juri; Fuchs, Johannes; Schreck, Tobias; Jordan, Alex; Keim, Daniel A.; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaDomain experts for collective animal behavior analyze relationships between single animal movers and groups of animals over time and space to detect emergent group properties. A common way to interpret this type of data is to visualize it as a spatio-temporal network. Collective behavior data sets are often large, and may hence result in dense and highly connected node-link diagrams, resulting in issues of node-overlap and edge clutter. In this design study, in an iterative design process, we developed glyphs as a design for seamlessly encoding relationships and movement characteristics of a single mover or clusters of movers. Based on these glyph designs, we developed a visual exploration prototype, MotionGlyphs, that supports domain experts in interactively filtering, clustering, and animating spatio-temporal networks for collective animal behavior analysis. By means of an expert evaluation, we show how MotionGlyphs supports important tasks and analysis goals of our domain experts, and we give evidence of the usefulness for analyzing spatio-temporal networks of collective animal behavior.
- «
- 1 (current)
- 2
- 3
- »