42-Issue 3
Permanent URI for this collection
Browse
Browsing 42-Issue 3 by Issue Date
Now showing 1 - 20 of 37
Results Per Page
Sort Options
Item A Fully Integrated Pipeline for Visual Carotid Morphology Analysis(The Eurographics Association and John Wiley & Sons Ltd., 2023) Eulzer, Pepe; Deylen, Fabienne von; Hsu, Wei-Chan; Wickenhöfer, Ralph; Klingner, Carsten M.; Lawonn, Kai; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasAnalyzing stenoses of the internal carotids - local constrictions of the artery - is a critical clinical task in cardiovascular disease treatment and prevention. For this purpose, we propose a self-contained pipeline for the visual analysis of carotid artery geometries. The only inputs are computed tomography angiography (CTA) scans, which are already recorded in clinical routine. We show how integrated model extraction and visualization can help to efficiently detect stenoses and we provide means for automatic, highly accurate stenosis degree computation. We directly connect multiple sophisticated processing stages, including a neural prediction network for lumen and plaque segmentation and automatic global diameter computation. We enable interactive and retrospective user control over the processing stages. Our aims are to increase user trust by making the underlying data validatable on the fly, to decrease adoption costs by minimizing external dependencies, and to optimize scalability by streamlining the data processing. We use interactive visualizations for data inspection and adaption to guide the user through the processing stages. The framework was developed and evaluated in close collaboration with radiologists and neurologists. It has been used to extract and analyze over 100 carotid bifurcation geometries and is built with a modular architecture, available as an extendable open-source platform.Item LINGO : Visually Debiasing Natural Language Instructions to Support Task Diversity(The Eurographics Association and John Wiley & Sons Ltd., 2023) Arunkumar, Anjana; Sharma, Shubham; Agrawal, Rakhi; Chandrasekaran, Sriram; Bryan, Chris; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasCross-task generalization is a significant outcome that defines mastery in natural language understanding. Humans show a remarkable aptitude for this, and can solve many different types of tasks, given definitions in the form of textual instructions and a small set of examples. Recent work with pre-trained language models mimics this learning style: users can define and exemplify a task for the model to attempt as a series of natural language prompts or instructions. While prompting approaches have led to higher cross-task generalization compared to traditional supervised learning, analyzing 'bias' in the task instructions given to the model is a difficult problem, and has thus been relatively unexplored. For instance, are we truly modeling a task, or are we modeling a user's instructions? To help investigate this, we develop LINGO, a novel visual analytics interface that supports an effective, task-driven workflow to (1) help identify bias in natural language task instructions, (2) alter (or create) task instructions to reduce bias, and (3) evaluate pre-trained model performance on debiased task instructions. To robustly evaluate LINGO, we conduct a user study with both novice and expert instruction creators, over a dataset of 1,616 linguistic tasks and their natural language instructions, spanning 55 different languages. For both user groups, LINGO promotes the creation of more difficult tasks for pre-trained models, that contain higher linguistic diversity and lower instruction bias. We additionally discuss how the insights learned in developing and evaluating LINGO can aid in the design of future dashboards that aim to minimize the effort involved in prompt creation across multiple domains.Item VisCoMET: Visually Analyzing Team Collaboration in Medical Emergency Trainings(The Eurographics Association and John Wiley & Sons Ltd., 2023) Liebers, Carina; Agarwal, Shivam; Krug, Maximilian; Pitsch, Karola; Beck, Fabian; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasHandling emergencies requires efficient and effective collaboration of medical professionals. To analyze their performance, in an application study, we have developed VisCoMET, a visual analytics approach displaying interactions of healthcare personnel in a triage training of a mass casualty incident. The application scenario stems from social interaction research, where the collaboration of teams is studied from different perspectives. We integrate recorded annotations from multiple sources, such as recorded videos of the sessions, transcribed communication, and eye-tracking information. For each session, an informationrich timeline visualizes events across these different channels, specifically highlighting interactions between the team members. We provide algorithmic support to identify frequent event patterns and to search for user-defined event sequences. Comparing different teams, an overview visualization aggregates each training session in a visual glyph as a node, connected to similar sessions through edges. An application example shows the usage of the approach in the comparative analysis of triage training sessions, where multiple teams encountered the same scene, and highlights discovered insights. The approach was evaluated through feedback from visualization and social interaction experts. The results show that the approach supports reflecting on teams' performance by exploratory analysis of collaboration behavior while particularly enabling the comparison of triage training sessions.Item FlexEvent: going beyond Case-Centric Exploration and Analysis of Multivariate Event Sequences(The Eurographics Association and John Wiley & Sons Ltd., 2023) Linden, Sanne van der; Wulterkens, Bernice M.; Gilst, Merel M. van; Overeem, Sebastiaan; Pul, Carola van; Vilanova, Anna; Elzen, Stef van den; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasIn many domains, multivariate event sequence data is collected focused around an entity (the case). Typically, each event has multiple attributes, for example, in healthcare a patient has events such as hospitalization, medication, and surgery. In addition to the multivariate events, also the case (a specific attribute, e.g., patient) has associated multivariate data (e.g., age, gender, weight). Current work typically only visualizes one attribute per event (label) in the event sequences. As a consequence, events can only be explored from a predefined case-centric perspective. However, to find complex relations from multiple perspectives (e.g., from different case definitions, such as doctor), users also need an event- and attribute-centric perspective. In addition, support is needed to effortlessly switch between and within perspectives. To support such a rich exploration, we present FlexEvent: an exploration and analysis method that enables investigation beyond a fixed case-centric perspective. Based on an adaptation of existing visualization techniques, such as scatterplots and juxtaposed small multiples, we enable flexible switching between different perspectives to explore the multivariate event sequence data needed to answer multi-perspective hypotheses. We evaluated FlexEvent with three domain experts in two use cases with sleep disorder and neonatal ICU data that show our method facilitates experts in exploring and analyzing real-world multivariate sequence data from different perspectives.Item Mini-VLAT: A Short and Effective Measure of Visualization Literacy(The Eurographics Association and John Wiley & Sons Ltd., 2023) Pandey, Saugat; Ottley, Alvitta; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasThe visualization community regards visualization literacy as a necessary skill. Yet, despite the recent increase in research into visualization literacy by the education and visualization communities, we lack practical and time-effective instruments for the widespread measurements of people's comprehension and interpretation of visual designs. We present Mini-VLAT, a brief but practical visualization literacy test. The Mini-VLAT is a 12-item short form of the 53-item Visualization Literacy Assessment Test (VLAT). The Mini-VLAT is reliable (coefficient omega = 0.72) and strongly correlates with the VLAT. Five visualization experts validated the Mini-VLAT items, yielding an average content validity ratio (CVR) of 0.6. We further validate Mini-VLAT by demonstrating a strong positive correlation between study participants' Mini-VLAT scores and their aptitude for learning an unfamiliar visualization using a Parallel Coordinate Plot test. Overall, the Mini-VLAT items showed a similar pattern of validity and reliability as the 53-item VLAT. The results show that Mini-VLAT is a psychometrically sound and practical short measure of visualization literacy.Item xOpat: eXplainable Open Pathology Analysis Tool(The Eurographics Association and John Wiley & Sons Ltd., 2023) Horák, JirÃ; Furmanová, KatarÃna; KozlÃková, Barbora; Brázdil, Tomáš; Holub, Petr; Kacenga, Martin; Gallo, Matej; Nenutil, Rudolf; ByÅ¡ka, Jan; Rusnak, Vit; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasHistopathology research quickly evolves thanks to advances in whole slide imaging (WSI) and artificial intelligence (AI). However, existing WSI viewers are tailored either for clinical or research environments, but none suits both. This hinders the adoption of new methods and communication between the researchers and clinicians. The paper presents xOpat, an open-source, browserbased WSI viewer that addresses these problems. xOpat supports various data sources, such as tissue images, pathologists' annotations, or additional data produced by AI models. Furthermore, it provides efficient rendering of multiple data layers, their visual representations, and tools for annotating and presenting findings. Thanks to its modular, protocol-agnostic, and extensible architecture, xOpat can be easily integrated into different environments and thus helps to bridge the gap between research and clinical practice. To demonstrate the utility of xOpat, we present three case studies, one conducted with a developer of AI algorithms for image segmentation and two with a research pathologist.Item Don't Peek at My Chart: Privacy-preserving Visualization for Mobile Devices(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zhang, Songheng; Ma, Dong; Wang, Yong; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasData visualizations have been widely used on mobile devices like smartphones for various tasks (e.g., visualizing personal health and financial data), making it convenient for people to view such data anytime and anywhere. However, others nearby can also easily peek at the visualizations, resulting in personal data disclosure. In this paper, we propose a perception-driven approach to transform mobile data visualizations into privacy-preserving ones. Specifically, based on human visual perception, we develop a masking scheme to adjust the spatial frequency and luminance contrast of colored visualizations. The resulting visualization retains its original information in close proximity but reduces visibility when viewed from a certain distance or farther away. We conducted two user studies to inform the design of our approach (N=16) and systematically evaluate its performance (N=18), respectively. The results demonstrate the effectiveness of our approach in terms of privacy preservation for mobile data visualizations.Item ChemoGraph: Interactive Visual Exploration of the Chemical Space(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kale, Bharat; Clyde, Austin; Sun, Maoyuan; Ramanathan, Arvind; Stevens, Rick; Papka, Michael E.; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasExploratory analysis of the chemical space is an important task in the field of cheminformatics. For example, in drug discovery research, chemists investigate sets of thousands of chemical compounds in order to identify novel yet structurally similar synthetic compounds to replace natural products. Manually exploring the chemical space inhabited by all possible molecules and chemical compounds is impractical, and therefore presents a challenge. To fill this gap, we present ChemoGraph, a novel visual analytics technique for interactively exploring related chemicals. In ChemoGraph, we formalize a chemical space as a hypergraph and apply novel machine learning models to compute related chemical compounds. It uses a database to find related compounds from a known space and a machine learning model to generate new ones, which helps enlarge the known space. Moreover, ChemoGraph highlights interactive features that support users in viewing, comparing, and organizing computationally identified related chemicals. With a drug discovery usage scenario and initial expert feedback from a case study, we demonstrate the usefulness of ChemoGraph.Item VISITOR: Visual Interactive State Sequence Exploration for Reinforcement Learning(The Eurographics Association and John Wiley & Sons Ltd., 2023) Metz, Yannick; Bykovets, Eugene; Joos, Lucas; Keim, Daniel; El-Assady, Mennatallah; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasUnderstanding the behavior of deep reinforcement learning agents is a crucial requirement throughout their development. Existing work has addressed the identification of observable behavioral patterns in state sequences or analysis of isolated internal representations; however, the overall decision-making of deep-learning RL agents remains opaque. To tackle this, we present VISITOR, a visual analytics system enabling the analysis of entire state sequences, the diagnosis of singular predictions, and the comparison between agents. A sequence embedding view enables the multiscale analysis of state sequences, utilizing custom embedding techniques for a stable spatialization of the observations and internal states. We provide multiple layers: (1) a state space embedding, highlighting different groups of states inside the state-action sequences, (2) a trajectory view, emphasizing decision points, (3) a network activation mapping, visualizing the relationship between observations and network activations, (4) a transition embedding, enabling the analysis of state-to-state transitions. The embedding view is accompanied by an interactive reward view that captures the temporal development of metrics, which can be linked directly to states in the embedding. Lastly, a model list allows for the quick comparison of models across multiple metrics. Annotations can be exported to communicate results to different audiences. Our two-stage evaluation with eight experts confirms the effectiveness in identifying states of interest, comparing the quality of policies, and reasoning about the internal decision-making processes.Item Memory-Efficient GPU Volume Path Tracing of AMR Data Using the Dual Mesh(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zellmann, Stefan; Wu, Qi; Ma, Kwan-Liu; Wald, Ingo; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasA common way to render cell-centric adaptive mesh refinement (AMR) data is to compute the dual mesh and visualize that with a standard unstructured element renderer. While the dual mesh provides a high-quality interpolator, the memory requirements of the dual mesh data structure are significantly higher than those of the original grid, which prevents rendering very large data sets. We introduce a GPU-friendly data structure and a clustering algorithm that allow for efficient AMR dual mesh rendering with a competitive memory footprint. Fundamentally, any off-the-shelf unstructured element renderer running on GPUs could be extended to support our data structure just by adding a gridlet element type in addition to the standard tetrahedra, pyramids, wedges, and hexahedra supported by default. We integrated the data structure into a volumetric path tracer to compare it to various state-of-the-art unstructured element sampling methods. We show that our data structure easily competes with these methods in terms of rendering performance, but is much more memory-efficient.Item VENUS: A Geometrical Representation for Quantum State Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2023) Ruan, Shaolun; Yuan, Ribo; Guan, Qiang; Lin, Yanna; Mao, Ying; Jiang, Weiwen; Wang, Zhepeng; Xu, Wei; Wang, Yong; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasVisualizations have played a crucial role in helping quantum computing users explore quantum states in various quantum computing applications. Among them, Bloch Sphere is the widely-used visualization for showing quantum states, which leverages angles to represent quantum amplitudes. However, it cannot support the visualization of quantum entanglement and superposition, the two essential properties of quantum computing. To address this issue, we propose VENUS, a novel visualization for quantum state representation. By explicitly correlating 2D geometric shapes based on the math foundation of quantum computing characteristics, VENUS effectively represents quantum amplitudes of both the single qubit and two qubits for quantum entanglement. Also, we use multiple coordinated semicircles to naturally encode probability distribution, making the quantum superposition intuitive to analyze. We conducted two well-designed case studies and an in-depth expert interview to evaluate the usefulness and effectiveness of VENUS. The result shows that VENUS can effectively facilitate the exploration of quantum states for the single qubit and two qubits.Item GO-Compass: Visual Navigation of Multiple Lists of GO terms(The Eurographics Association and John Wiley & Sons Ltd., 2023) Harbig, Theresa; Witte Paz, Mathias; Nieselt, Kay; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasAnalysis pipelines in genomics, transcriptomics, and proteomics commonly produce lists of genes, e.g., differentially expressed genes. Often these lists overlap only partly or not at all and contain too many genes for manual comparison. However, using background knowledge, such as the functional annotations of the genes, the lists can be abstracted to functional terms. One approach is to run Gene Ontology (GO) enrichment analyses to determine over- and/or underrepresented functions for every list of genes. Due to the hierarchical structure of the Gene Ontology, lists of enriched GO terms can contain many closely related terms, rendering the lists still long, redundant, and difficult to interpret for researchers. In this paper, we present GO-Compass (Gene Ontology list comparison using Semantic Similarity), a visual analytics tool for the dispensability reduction and visual comparison of lists of GO terms. For dispensability reduction, we adapted the REVIGO algorithm, a summarization method based on the semantic similarity of GO terms, to perform hierarchical dispensability clustering on multiple lists. In an interactive dashboard, GO-Compass offers several visualizations for the comparison and improved interpretability of GO terms lists. The hierarchical dispensability clustering is visualized as a tree, where users can interactively filter out dispensable GO terms and create flat clusters by cutting the tree at a chosen dispensability. The flat clusters are visualized in animated treemaps and are compared using a correlation heatmap, UpSet plots, and bar charts. With two use cases on published datasets from different omics domains, we demonstrate the general applicability and effectiveness of our approach. In the first use case, we show how the tool can be used to compare lists of differentially expressed genes from a transcriptomics pipeline and incorporate gene information into the analysis. In the second use case using genomics data, we show how GO-Compass facilitates the analysis of many hundreds of GO terms. For qualitative evaluation of the tool, we conducted feedback sessions with five domain experts and received positive comments. GO-Compass is part of the Tue- Vis Visualization Server as a web application available at https://go-compass-tuevis.cs.uni-tuebingen.de/Item A Comparative Evaluation of Visual Summarization Techniques for Event Sequences(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zinat, Kazi Tasnim; Yang, Jinhua; Gandhi, Arjun; Mitra, Nistha; Liu, Zhicheng; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasReal-world event sequences are often complex and heterogeneous, making it difficult to create meaningful visualizations using simple data aggregation and visual encoding techniques. Consequently, visualization researchers have developed numerous visual summarization techniques to generate concise overviews of sequential data. These techniques vary widely in terms of summary structures and contents, and currently there is a knowledge gap in understanding the effectiveness of these techniques. In this work, we present the design and results of an insight-based crowdsourcing experiment evaluating three existing visual summarization techniques: CoreFlow, SentenTree, and Sequence Synopsis. We compare the visual summaries generated by these techniques across three tasks, on six datasets, at six levels of granularity. We analyze the effects of these variables on summary quality as rated by participants and completion time of the experiment tasks. Our analysis shows that Sequence Synopsis produces the highest-quality visual summaries for all three tasks, but understanding Sequence Synopsis results also takes the longest time. We also find that the participants evaluate visual summary quality based on two aspects: content and interpretability. We discuss the implications of our findings on developing and evaluating new visual summarization techniques.Item Visual Analytics on Network Forgetting for Task-Incremental Learning(The Eurographics Association and John Wiley & Sons Ltd., 2023) Li, Ziwei; Xu, Jiayi; Chao, Wei-Lun; Shen, Han-Wei; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasTask-incremental learning (Task-IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learning tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years, with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten during the incremental learning process still remains under-explored. In this paper, we propose KnowledgeDrift, a visual analytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by tracking the task performance under the incremental learning process and then provides in-depth inspections of drifted information via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time.Item Doom or Deliciousness: Challenges and Opportunities for Visualization in the Age of Generative Models(The Eurographics Association and John Wiley & Sons Ltd., 2023) Schetinger, Victor; Bartolomeo, Sara Di; El-Assady, Mennatallah; McNutt, Andrew; Miller, Matthias; Passos, João Paulo Apolinário; Adams, Jane L.; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasGenerative text-to-image models (as exemplified by DALL-E, MidJourney, and Stable Diffusion) have recently made enormous technological leaps, demonstrating impressive results in many graphical domains-from logo design to digital painting to photographic composition. However, the quality of these results has led to existential crises in some fields of art, leading to questions about the role of human agency in the production of meaning in a graphical context. Such issues are central to visualization, and while these generative models have yet to be widely applied in visualization, it seems only a matter of time until their integration is manifest. Seeking to circumvent similar ponderous dilemmas, we attempt to understand the roles that generative models might play across visualization.We do so by constructing a framework that characterizes what these technologies offer at various stages of the visualization workflow, augmented and analyzed through semi-structured interviews with 21 experts from related domains. Through this work, we map the space of opportunities and risks that might arise in this intersection, identifying doomsday prophecies and delicious low-hanging fruits that are ripe for research.Item Been There, Seen That: Visualization of Movement and 3D Eye Tracking Data from Real-World Environments(The Eurographics Association and John Wiley & Sons Ltd., 2023) Pathmanathan, Nelusa; Öney, Seyda; Becher, Michael; Sedlmair, Michael; Weiskopf, Daniel; Kurzhals, Kuno; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasThe distribution of visual attention can be evaluated using eye tracking, providing valuable insights into usability issues and interaction patterns. However, when used in real, augmented, and collaborative environments, new challenges arise that go beyond desktop scenarios and purely virtual environments. Toward addressing these challenges, we present a visualization technique that provides complementary views on the movement and eye tracking data recorded from multiple people in realworld environments. Our method is based on a space-time cube visualization and a linked 3D replay of recorded data. We showcase our approach with an experiment that examines how people investigate an artwork collection. The visualization provides insights into how people moved and inspected individual pictures in their spatial context over time. In contrast to existing methods, this analysis is possible for multiple participants without extensive annotation of areas of interest. Our technique was evaluated with a think-aloud experiment to investigate analysis strategies and an interview with domain experts to examine the applicability in other research fields.Item ParaDime: A Framework for Parametric Dimensionality Reduction(The Eurographics Association and John Wiley & Sons Ltd., 2023) Hinterreiter, Andreas; Humer, Christina; Kainz, Bernhard; Streit, Marc; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the idea that the objective functions of several modern DR techniques result from transformed inter-item relationships. It provides a common interface for specifying these relations and transformations and for defining how they are used within the losses that govern the training process. Through this interface, ParaDime unifies parametric versions of DR techniques such as metric MDS, t-SNE, and UMAP. It allows users to fully customize all aspects of the DR process.We show how this ease of customization makes ParaDime suitable for experimenting with interesting techniques such as hybrid classification/embedding models and supervised DR. This way, ParaDime opens up new possibilities for visualizing high-dimensional data.Item visMOP - A Visual Analytics Approach for Multi-omics Pathways(The Eurographics Association and John Wiley & Sons Ltd., 2023) Brich, Nicolas; Schacherer, Nadine; Hoene, Miriam; Weigert, Cora; Lehmann, Rainer; Krone, Michael; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasWe present an approach for the visual analysis of multi-omics data obtained using high-throughput methods. The term ''omics'' denotes measurements of different types of biologically relevant molecules, like the products of gene transcription (transcriptomics) or the abundance of proteins (proteomics). Current popular visualization approaches often only support analyzing each of these omics separately. This, however, disregards the interconnectedness of different biologically relevant molecules and processes. Consequently, it describes the actual events in the organism suboptimally or only partially. Our visual analytics approach for multi-omics data provides a comprehensive overview and details-on-demand by integrating the different omics types in multiple linked views. To give an overview, we map the measurements to known biological pathways and use a combination of a clustered network visualization, glyphs, and interactive filtering. To ensure the effectiveness and utility of our approach, we designed it in close collaboration with domain experts and assessed it using an exemplary workflow with real-world transcriptomics, proteomics, and lipidomics measurements from mice.Item DASS Good: Explainable Data Mining of Spatial Cohort Data(The Eurographics Association and John Wiley & Sons Ltd., 2023) Wentzel, Andrew; Floricel, Carla; Canahuate, Guadalupe; Naser, Mohamed A.; Mohamed, Abdallah S.; Fuller, Clifton David; Dijk, Lisanne van; Marai, G. Elisabeta; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasDeveloping applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.Item Exploring Interpersonal Relationships in Historical Voting Records(The Eurographics Association and John Wiley & Sons Ltd., 2023) Cantareira, Gabriel Dias; Xing, Yiwen; Cole, Nicholas; Borgo, Rita; Abdul-Rahman, Alfie; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasHistorical records from democratic processes and negotiation of constitutional texts are a complex type of data to navigate due to the many different elements that are constantly interacting with one another: people, timelines, different proposed documents, changes to such documents, and voting to approve or reject those changes. In particular, voting records can offer various insights about relationships between people of note in that historical context, such as alliances that can form and dissolve over time and people with unusual behavior. In this paper, we present a toolset developed to aid users in exploring relationships in voting records from a particular domain of constitutional conventions. The toolset consists of two elements: a dataset visualizer, which shows the entire timeline of a convention and allows users to investigate relationships at different moments in time via dimensionality reduction, and a person visualizer, which shows details of a given person's activity in that convention to aid in understanding the behavior observed in the dataset visualizer. We discuss our design choices and how each tool in those elements works towards our goals, and how they were perceived in an evaluation conducted with domain experts.