34-Issue 2
Permanent URI for this collection
Browse
Browsing 34-Issue 2 by Subject "Color"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Compressive Image Reconstruction in Reduced Union of Subspaces(The Eurographics Association and John Wiley & Sons Ltd., 2015) Miandji, Ehsan; Kronander, Joel; Unger, Jonas; Olga Sorkine-Hornung and Michael WimmerWe present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and their higher dimensional variants, e.g. animations and light-fields. The algorithm relies on a learning-based basis representation. We train an ensemble of intrinsically two-dimensional (2D) dictionaries that operate locally on a set of 2D patches extracted from the input data. We show that one can convert the problem of 2D sparse signal recovery to an equivalent 1D form, enabling us to utilize a large family of sparse solvers. The proposed framework represents the input signals in a reduced union of subspaces model, while allowing sparsity in each subspace. Such a model leads to a much more sparse representation than widely used methods such as K-SVD. To evaluate our method, we apply it to three different scenarios where the signal dimensionality varies from 2D (images) to 3D (animations) and 4D (light-fields). We show that our method outperforms state-of-the-art algorithms in computer graphics and image processing literature.Item Content-Independent Multi-Spectral Display Using Superimposed Projections(The Eurographics Association and John Wiley & Sons Ltd., 2015) Li, Yuqi; Majumder, Aditi; Lu, Dongming; Gopi, Meenakshisundaram; Olga Sorkine-Hornung and Michael WimmerMany works focus on multi-spectral capture and analysis, but multi-spectral display still remains a challenge. Most prior works on multi-primary displays use ad-hoc narrow band primaries that assure a larger color gamut, but cannot assure a good spectral reproduction. Content-dependent spectral analysis is the only way to produce good spectral reproduction, but cannot be applied to general data sets. Wide primaries are better suited for assuring good spectral reproduction due to greater coverage of the spectral range, but have not been explored much. In this paper we explore the use of wide band primaries for accurate spectral reproduction for the first time and present the first content-independent multi-spectral display achieved using superimposed projections with modified wide band primaries. We present a content-independent primary selection method that selects a small set of n primaries from a large set of m candidate primaries where m > n. Our primary selection method chooses primaries with complete coverage of the range of visible wavelength (for good spectral reproduction accuracy), low interdependency (to limit the primaries to a small number) and higher light throughput (for higher light efficiency). Once the primaries are selected, the input values of the different primary channels to generate a desired spectrum are computed using an optimization method that minimizes spectral mismatch while maximizing visual quality. We implement a real prototype of multi-spectral display consisting of 9-primaries using three modified conventional 3-primary projectors, and compare it with a conventional display to demonstrate its superior performance. Experiments show our display is capable of providing large gamut assuring a good visual appearance while displaying any multi-spectral images at a high spectral accuracy.Item IlluminationCut(The Eurographics Association and John Wiley & Sons Ltd., 2015) Bus, Norbert; Mustafa, Nabil H.; Biri, Venceslas; Olga Sorkine-Hornung and Michael WimmerWe present a novel algorithm, IlluminationCut, for rendering images using the many-lights framework. It handles any light source that can be approximated with virtual point lights (VPLs) as well as highly glossy materials. The algorithm extends the Multidimensional Lightcuts technique by effectively creating an illumination-aware clustering of the product-space of the set of points to be shaded and the set of VPLs. Additionally, the number of visibility queries for each product-space cluster is reduced by using an adaptive sampling technique. Our framework is flexible and achieves around 3 - 6 times speedup over previous state-of-the-art methods.Item Partitioned Shadow Volumes(The Eurographics Association and John Wiley & Sons Ltd., 2015) Gerhards, Julien; Mora, Frédéric; Aveneau, Lilian; Ghazanfarpour, Djamchid; Olga Sorkine-Hornung and Michael WimmerReal-time shadows remain a challenging problem in computer graphics. In this context, shadow algorithms generally rely either on shadow mapping or shadow volumes. This paper rediscovers an old class of algorithms that build a binary space partition over the shadow volumes. For almost 20 years, such methods have received little attention as they have been considered lacking of both robustness and efficiency. We show that these issues can be overcome, leading to a simple and robust shadow algorithm. Hence we demonstrate that this kind of approach can reach a high level of performance. Our algorithm uses a new partitioning strategy which avoids any polygon clipping. It relies on a Ternary Object Partitioning tree, a new data structure used to find if an image point is shadowed. Our method works on a triangle soup and its memory footprint is fixed. Our experiments show that it is efficient and robust, including for finely tessellated models.