34-Issue 2
Permanent URI for this collection
Browse
Browsing 34-Issue 2 by Issue Date
Now showing 1 - 20 of 56
Results Per Page
Sort Options
Item CHC+RT: Coherent Hierarchical Culling for Ray Tracing(The Eurographics Association and John Wiley & Sons Ltd., 2015) Mattausch, Oliver; Bittner, JirÃ; Jaspe, Alberto; Gobbetti, Enrico; Wimmer, Michael; Pajarola, Renato; Olga Sorkine-Hornung and Michael WimmerWe propose a new technique for in-core and out-of-core GPU ray tracing using a generalization of hierarchical occlusion culling in the style of the CHC++ method. Our method exploits the rasterization pipeline and hardware occlusion queries in order to create coherent batches of work for localized shader-based ray tracing kernels. By combining hierarchies in both ray space and object space, the method is able to share intermediate traversal results among multiple rays. We exploit temporal coherence among similar ray sets between frames and also within the given frame. A suitable management of the current visibility state makes it possible to benefit from occlusion culling for less coherent ray types like diffuse reflections. Since large scenes are still a challenge for modern GPU ray tracers, our method is most useful for scenes with medium to high complexity, especially since our method inherently supports ray tracing highly complex scenes that do not fit in GPU memory. For in-core scenes our method is comparable to CUDA ray tracing and performs up to 5:94 better than pure shader-based ray tracing.Item Interactive Dimensioning of Parametric Models(The Eurographics Association and John Wiley & Sons Ltd., 2015) Kelly, Tom; Wonka, Peter; Müller, Pascal; Olga Sorkine-Hornung and Michael WimmerWe propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: a dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.Item IsoMatch: Creating Informative Grid Layouts(The Eurographics Association and John Wiley & Sons Ltd., 2015) Fried, Ohad; DiVerdi, Stephen; Halber, Maciej; Sizikova, Elena; Finkelstein, Adam; Olga Sorkine-Hornung and Michael WimmerCollections of objects such as images are often presented visually in a grid because it is a compact representation that lends itself well for search and exploration. Most grid layouts are sorted using very basic criteria, such as date or filename. In this work we present a method to arrange collections of objects respecting an arbitrary distance measure. Pairwise distances are preserved as much as possible, while still producing the specific target arrangement which may be a 2D grid, the surface of a sphere, a hierarchy, or any other shape. We show that our method can be used for infographics, collection exploration, summarization, data visualization, and even for solving problems such as where to seat family members at a wedding. We present a fast algorithm that can work on large collections and quantitatively evaluate how well distances are preserved.Item VDub: Modifying Face Video of Actors for Plausible Visual Alignment to a Dubbed Audio Track(The Eurographics Association and John Wiley & Sons Ltd., 2015) Garrido, Pablo; Valgaerts, Levi; Sarmadi, Hamid; Steiner, Ingmar; Varanasi, Kiran; Perez, Patrick; Theobalt, Christian; Olga Sorkine-Hornung and Michael WimmerIn many countries, foreign movies and TV productions are dubbed, i.e., the original voice of an actor is replaced with a translation that is spoken by a dubbing actor in the country's own language. Dubbing is a complex process that requires specific translations and accurately timed recitations such that the new audio at least coarsely adheres to the mouth motion in the video. However, since the sequence of phonemes and visemes in the original and the dubbing language are different, the video-to-audio match is never perfect, which is a major source of visual discomfort. In this paper, we propose a system to alter the mouth motion of an actor in a video, so that it matches the new audio track. Our paper builds on high-quality monocular capture of 3D facial performance, lighting and albedo of the dubbing and target actors, and uses audio analysis in combination with a space-time retrieval method to synthesize a new photo-realistically rendered and highly detailed 3D shape model of the mouth region to replace the target performance. We demonstrate plausible visual quality of our results compared to footage that has been professionally dubbed in the traditional way, both qualitatively and through a user study.Item Compressive Image Reconstruction in Reduced Union of Subspaces(The Eurographics Association and John Wiley & Sons Ltd., 2015) Miandji, Ehsan; Kronander, Joel; Unger, Jonas; Olga Sorkine-Hornung and Michael WimmerWe present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and their higher dimensional variants, e.g. animations and light-fields. The algorithm relies on a learning-based basis representation. We train an ensemble of intrinsically two-dimensional (2D) dictionaries that operate locally on a set of 2D patches extracted from the input data. We show that one can convert the problem of 2D sparse signal recovery to an equivalent 1D form, enabling us to utilize a large family of sparse solvers. The proposed framework represents the input signals in a reduced union of subspaces model, while allowing sparsity in each subspace. Such a model leads to a much more sparse representation than widely used methods such as K-SVD. To evaluate our method, we apply it to three different scenarios where the signal dimensionality varies from 2D (images) to 3D (animations) and 4D (light-fields). We show that our method outperforms state-of-the-art algorithms in computer graphics and image processing literature.Item Content-Independent Multi-Spectral Display Using Superimposed Projections(The Eurographics Association and John Wiley & Sons Ltd., 2015) Li, Yuqi; Majumder, Aditi; Lu, Dongming; Gopi, Meenakshisundaram; Olga Sorkine-Hornung and Michael WimmerMany works focus on multi-spectral capture and analysis, but multi-spectral display still remains a challenge. Most prior works on multi-primary displays use ad-hoc narrow band primaries that assure a larger color gamut, but cannot assure a good spectral reproduction. Content-dependent spectral analysis is the only way to produce good spectral reproduction, but cannot be applied to general data sets. Wide primaries are better suited for assuring good spectral reproduction due to greater coverage of the spectral range, but have not been explored much. In this paper we explore the use of wide band primaries for accurate spectral reproduction for the first time and present the first content-independent multi-spectral display achieved using superimposed projections with modified wide band primaries. We present a content-independent primary selection method that selects a small set of n primaries from a large set of m candidate primaries where m > n. Our primary selection method chooses primaries with complete coverage of the range of visible wavelength (for good spectral reproduction accuracy), low interdependency (to limit the primaries to a small number) and higher light throughput (for higher light efficiency). Once the primaries are selected, the input values of the different primary channels to generate a desired spectrum are computed using an optimization method that minimizes spectral mismatch while maximizing visual quality. We implement a real prototype of multi-spectral display consisting of 9-primaries using three modified conventional 3-primary projectors, and compare it with a conventional display to demonstrate its superior performance. Experiments show our display is capable of providing large gamut assuring a good visual appearance while displaying any multi-spectral images at a high spectral accuracy.Item Scalable Partitioning for Parallel Position Based Dynamics(The Eurographics Association and John Wiley & Sons Ltd., 2015) Fratarcangeli, Marco; Pellacini, Fabio; Olga Sorkine-Hornung and Michael WimmerWe introduce a practical partitioning technique designed for parallelizing Position Based Dynamics, and exploiting the ubiquitous multi-core processors present in current commodity GPUs. The input is a set of particles whose dynamics is influenced by spatial constraints. In the initialization phase, we build a graph in which each node corresponds to a constraint and two constraints are connected by an edge if they influence at least one common particle. We introduce a novel greedy algorithm for inserting additional constraints (phantoms) in the graph such that the resulting topology is ˆ q-colourable, where ˆ q 2 is an arbitrary number. We color the graph, and the constraints with the same color are assigned to the same partition. Then, the set of constraints belonging to each partition is solved in parallel during the animation phase. We demonstrate this by using our partitioning technique; the performance hit caused by the GPU kernel calls is significantly decreased, leaving unaffected the visual quality, robustness and speed of serial position based dynamics.Item Biologically-Inspired Visual Simulation of Insect Swarms(The Eurographics Association and John Wiley & Sons Ltd., 2015) Li, Weizi; Wolinski, David; Pettré, Julien; Lin, Ming C.; Olga Sorkine-Hornung and Michael WimmerRepresenting the majority of living animals, insects are the most ubiquitous biological organisms on Earth. Being able to simulate insect swarms could enhance visual realism of various graphical applications. However, the very complex nature of insect behaviors makes its simulation a challenging computational problem. To address this, we present a general biologically-inspired framework for visual simulation of insect swarms. Our approach is inspired by the observation that insects exhibit emergent behaviors at various scales in nature. At the low level, our framework automatically selects and configures the most suitable steering algorithm for the local collision avoidance task. At the intermediate level, it processes insect trajectories into piecewise-linear segments and constructs probability distribution functions for sampling waypoints. These waypoints are then evaluated by the Metropolis- Hastings algorithm to preserve global structures of insect swarms at the high level. With this biologically inspired, data-driven approach, we are able to simulate insect behaviors at different scales and we evaluate our simulation using both qualitative and quantitative metrics. Furthermore, as insect data could be difficult to acquire, our framework can be adopted as a computer-assisted animation tool to interpret sketch-like input as user control and generate simulations of complex insect swarming phenomena.Item 3D Fabrication of 2D Mechanisms(The Eurographics Association and John Wiley & Sons Ltd., 2015) Hergel, Jean; Lefebvre, Sylvain; Olga Sorkine-Hornung and Michael WimmerThe success of physics sandbox applications and physics-based puzzle games is a strong indication that casual users and hobbyists enjoy designing mechanisms, for educational or entertainment purposes. In these applications, a variety of mechanisms are designed by assembling two-dimensional shapes, creating gears, cranks, cams, and racks. The experience is made enjoyable by the fact that the user does not need to worry about the intricate geometric details that would be necessary to produce a real mechanism. In this paper, we propose to start from such casual designs of mechanisms and turn them into a 3D model that can be printed onto widely available, inexpensive filament based 3D printers. Our intent is to empower the users of such tools with the ability to physically realize their mechanisms and see them operate in the real world. To achieve this goal we tackle several challenges. The input 2D mechanism allows for some parts to overlap during simulation. These overlapping parts have to be resolved into non-intersecting 3D parts in the real mechanism. We introduce a novel scheme based on the idea of including moving parts into one another whenever possible. This reduces bending stresses on axles compared to previous methods. Our approach supports sliding parts and arbitrarily shaped mechanical parts in the 2D input. The exact 3D shape of the parts is inferred from the 2D input and the simulation of the mechanism, using boolean operations between shapes. The input mechanism is often simply attached to the background. We automatically synthesize a chassis by formulating a topology optimization problem, taking into account the stresses exerted by the mechanism on the chassis through time.Item A Biophysically-Based Model of the Optical Properties of Skin Aging(The Eurographics Association and John Wiley & Sons Ltd., 2015) Iglesias-Guitian, Jose A.; Aliaga, Carlos; Jarabo, Adrian; Gutierrez, Diego; Olga Sorkine-Hornung and Michael WimmerThis paper presents a time-varying, multi-layered biophysically-based model of the optical properties of human skin, suitable for simulating appearance changes due to aging. We have identified the key aspects that cause such changes, both in terms of the structure of skin and its chromophore concentrations, and rely on the extensive medical and optical tissue literature for accurate data. Our model can be expressed in terms of biophysical parameters, optical parameters commonly used in graphics and rendering (such as spectral absorption and scattering coefficients), or more intuitively with higher-level parameters such as age, gender, skin care or skin type. It can be used with any rendering algorithm that uses diffusion profiles, and it allows to automatically simulate different types of skin at different stages of aging, avoiding the need for artistic input or costly capture processes. While the presented skin model is inspired on tissue optics studies, we also provided a simplified version valid for non-diagnostic applications.Item Template Assembly for Detailed Urban Reconstruction(The Eurographics Association and John Wiley & Sons Ltd., 2015) Nan, Liangliang; Jiang, Caigui; Ghanem, Bernard; Wonka, Peter; Olga Sorkine-Hornung and Michael WimmerWe propose a new framework to reconstruct building details by automatically assembling 3D templates on coarse textured building models. In a preprocessing step, we generate an initial coarse model to approximate a point cloud computed using Structure from Motion and Multi View Stereo, and we model a set of 3D templates of facade details. Next, we optimize the initial coarse model to enforce consistency between geometry and appearance (texture images). Then, building details are reconstructed by assembling templates on the textured faces of the coarse model. The 3D templates are automatically chosen and located by our optimization-based template assembly algorithm that balances image matching and structural regularity. In the results, we demonstrate how our framework can enrich the details of coarse models using various data sets.Item Approximating Free-form Geometry with Height Fields for Manufacturing(The Eurographics Association and John Wiley & Sons Ltd., 2015) Herholz, Philipp; Matusik, Wojciech; Alexa, Marc; Olga Sorkine-Hornung and Michael WimmerWe consider the problem of manufacturing free-form geometry with classical manufacturing techniques, such as mold casting or 3-axis milling. We determine a set of constraints that are necessary for manufacturability and then decompose and, if necessary, deform the shape to satisfy the constraints per segment. We show that many objects can be generated from a small number of (mold-)pieces if slight deformations are acceptable. We provide examples of actual molds and the resulting manufactured objects.Item Optimal Spline Approximation via l0-Minimization(The Eurographics Association and John Wiley & Sons Ltd., 2015) Brandt, Christopher; Seidel, Hans-Peter; Hildebrandt, Klaus; Olga Sorkine-Hornung and Michael WimmerSplines are part of the standard toolbox for the approximation of functions and curves in Rd. Still, the problem of finding the spline that best approximates an input function or curve is ill-posed, since in general this yields a ''spline'' with an infinite number of segments. The problem can be regularized by adding a penalty term for the number of spline segments. We show how this idea can be formulated as an 0-regularized quadratic problem. This gives us a notion of optimal approximating splines that depend on one parameter, which weights the approximation error against the number of segments. We detail this concept for different types of splines including B-splines and composite Bézier curves. Based on the latest development in the field of sparse approximation, we devise a solver for the resulting minimization problems and show applications to spline approximation of planar and space curves and to spline conversion of motion capture data.Item Sample Elimination for Generating Poisson Disk Sample Sets(The Eurographics Association and John Wiley & Sons Ltd., 2015) Yuksel, Cem; Olga Sorkine-Hornung and Michael WimmerIn this paper we describe sample elimination for generating Poisson disk sample sets with a desired size. We introduce a greedy sample elimination algorithm that assigns a weight to each sample in a given set and eliminates the ones with greater weights in order to pick a subset of a desired size with Poisson disk property without having to specify a Poisson disk radius. This new algorithm is simple, computationally efficient, and it can work in any sampling domain, producing sample sets with more pronounced blue noise characteristics than dart throwing. Most importantly, it allows unbiased progressive (adaptive) sampling and it scales better to high dimensions than previous methods. However, it cannot guarantee maximal coverage. We provide a statistical analysis of our algorithm in 2D and higher dimensions as well as results from our tests with different example applications.Item T-SAH: Animation Optimized Bounding Volume Hierarchies(The Eurographics Association and John Wiley & Sons Ltd., 2015) Bittner, JirÃ; Meister, Daniel; Olga Sorkine-Hornung and Michael WimmerWe propose a method for creating a bounding volume hierarchy (BVH) that is optimized for all frames of a given animated scene. The method is based on a novel extension of surface area heuristic to temporal domain (T-SAH). We perform iterative BVH optimization using T-SAH and create a single BVH accounting for scene geometry distribution at different frames of the animation. Having a single optimized BVH for the whole animation makes our method extremely easy to integrate to any application using BVHs, limiting the per-frame overhead only to refitting the bounding volumes.We evaluated the T-SAH optimized BVHs in the scope of real-time GPU ray tracing. We demonstrate, that our method can handle even highly complex inputs with large deformations and significant topology changes. The results show, that in a vast majority of tested scenes our method provides significantly better run-time performance than traditional SAH and also better performance than GPU based per-frame BVH rebuild.Item Approximating the Generalized Voronoi Diagram of Closely Spaced Objects(The Eurographics Association and John Wiley & Sons Ltd., 2015) Edwards, John; Daniel, Eric; Pascucci, Valerio; Bajaj, Chandrajit; Olga Sorkine-Hornung and Michael WimmerWe present an algorithm to compute an approximation of the generalized Voronoi diagram (GVD) on arbitrary collections of 2D or 3D geometric objects. In particular, we focus on datasets with closely spaced objects; GVD approximation is expensive and sometimes intractable on these datasets using previous algorithms. With our approach, the GVD can be computed using commodity hardware even on datasets with many, extremely tightly packed objects. Our approach is to subdivide the space with an octree that is represented with an adjacency structure. We then use a novel adaptive distance transform to compute the distance function on octree vertices. The computed distance field is sampled more densely in areas of close object spacing, enabling robust and parallelizable GVD surface generation. We demonstrate our method on a variety of data and show example applications of the GVD in 2D and 3D.Item Parallel, Realistic and Controllable Terrain Synthesis(The Eurographics Association and John Wiley & Sons Ltd., 2015) Gain, James; Merry, Bruce; Marais, Patrick; Olga Sorkine-Hornung and Michael WimmerThe challenge in terrain synthesis for virtual environments is to provide a combination of precise user control over landscape form, with interactive response and visually realistic results. We present a system that builds on parallel pixel-based texture synthesis to enable interactive creation of an output terrain from a database of heightfield exemplars. We also provide modelers with control over height and surrounding slope by means of constraint points and curves; a paint-by-numbers interface for specifying the local character of terrain; coherence controls that allow localization of changes to the synthesized terrain; and copypaste functionality to directly transplant terrain regions. Together these contributions provide a level of realism that, based on user experiments, is indistinguishable from real source terrains; user control sufficient for precise placement of a variety of landforms, such as cliffs, ravines and mesas; and synthesis times of 165ms for a 10242 terrain grid.Item Improving Sampling-based Motion Control(The Eurographics Association and John Wiley & Sons Ltd., 2015) Liu, Libin; Yin, KangKang; Guo, Baining; Olga Sorkine-Hornung and Michael WimmerWe address several limitations of the sampling-based motion control method of Liu et at. [LYvdP 10]. The key insight is to learn from the past control reconstruction trials through sample distribution adaptation. Coupled with a sliding window scheme for better performance and an averaging method for noise reduction, the improved algorithm can efficiently construct open-loop controls for long and challenging reference motions in good quality. Our ideas are intuitive and the implementations are simple. We compare the improved algorithm with the original algorithm both qualitatively and quantitatively, and demonstrate the effectiveness of the improved algorithm with a variety of motions ranging from stylized walking and dancing to gymnastic and Martial Arts routines.Item Adaptable Anatomical Models for Realistic Bone Motion Reconstruction(The Eurographics Association and John Wiley & Sons Ltd., 2015) Zhu, Lifeng; Hu, Xiaoyan; Kavan, Ladislav; Olga Sorkine-Hornung and Michael WimmerWe present a system to reconstruct subject-specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin remain well-articulated after the adaptation.We propose an optimization algorithm which learns the subject-specific (anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting personalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically-based inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than previous methods such as OpenSIM or Anatomy Transfer.Item A Dimension-reduced Pressure Solver for Liquid Simulations(The Eurographics Association and John Wiley & Sons Ltd., 2015) Ando, Ryoichi; Thürey, Nils; Wojtan, Chris; Olga Sorkine-Hornung and Michael WimmerThis work presents a method for efficiently simplifying the pressure projection step in a liquid simulation. We first devise a straightforward dimension reduction technique that dramatically reduces the cost of solving the pressure projection. Next, we introduce a novel change of basis that satisfies free-surface boundary conditions exactly, regardless of the accuracy of the pressure solve. When combined, these ideas greatly reduce the computational complexity of the pressure solve without compromising free surface boundary conditions at the highest level of detail. Our techniques are easy to parallelize, and they effectively eliminate the computational bottleneck for large liquid simulations.