40-Issue 3
Permanent URI for this collection
Browse
Browsing 40-Issue 3 by Subject "Computing methodologies"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Compressive Neural Representations of Volumetric Scalar Fields(The Eurographics Association and John Wiley & Sons Ltd., 2021) Lu, Yuzhe; Jiang, Kairong; Levine, Joshua A.; Berger, Matthew; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonWe present an approach for compressing volumetric scalar fields using implicit neural representations. Our approach represents a scalar field as a learned function, wherein a neural network maps a point in the domain to an output scalar value. By setting the number of weights of the neural network to be smaller than the input size, we achieve compressed representations of scalar fields, thus framing compression as a type of function approximation. Combined with carefully quantizing network weights, we show that this approach yields highly compact representations that outperform state-of-the-art volume compression approaches. The conceptual simplicity of our approach enables a number of benefits, such as support for time-varying scalar fields, optimizing to preserve spatial gradients, and random-access field evaluation. We study the impact of network design choices on compression performance, highlighting how simple network architectures are effective for a broad range of volumes.Item Guided Stable Dynamic Projections(The Eurographics Association and John Wiley & Sons Ltd., 2021) Vernier, Eduardo Faccin; Comba, João L. D.; Telea, Alexandru C.; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonProjections aim to convey the relationships and similarity of high-dimensional data in a low-dimensional representation. Most such techniques are designed for static data. When used for time-dependent data, they usually fail to create a stable and suitable low dimensional representation. We propose two dynamic projection methods (PCD-tSNE and LD-tSNE) that use global guides to steer projection points. This avoids unstable movement that does not encode data dynamics while keeping t-SNE's neighborhood preservation ability. PCD-tSNE scores a good balance between stability, neighborhood preservation, and distance preservation, while LD-tSNE allows creating stable and customizable projections. We compare our methods to 11 other techniques using quality metrics and datasets provided by a recent benchmark for dynamic projections.Item Implicit Modeling of Patient-Specific Aortic Dissections with Elliptic Fourier Descriptors(The Eurographics Association and John Wiley & Sons Ltd., 2021) Mistelbauer, Gabriel; Rössl, Christian; Bäumler, Kathrin; Preim, Bernhard; Fleischmann, Dominik; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonAortic dissection is a life-threatening vascular disease characterized by abrupt formation of a new flow channel (false lumen) within the aortic wall. Survivors of the acute phase remain at high risk for late complications, such as aneurysm formation, rupture, and death. Morphologic features of aortic dissection determine not only treatment strategies in the acute phase (surgical vs. endovascular vs. medical), but also modulate the hemodynamics in the false lumen, ultimately responsible for late complications. Accurate description of the true and false lumen, any communications across the dissection membrane separating the two lumina, and blood supply from each lumen to aortic branch vessels is critical for risk prediction. Patient-specific surface representations are also a prerequisite for hemodynamic simulations, but currently require time-consuming manual segmentation of CT data. We present an aortic dissection cross-sectional model that captures the varying aortic anatomy, allowing for reliable measurements and creation of high-quality surface representations. In contrast to the traditional spline-based cross-sectional model, we employ elliptic Fourier descriptors, which allows users to control the accuracy of the cross-sectional contour of a flow channel. We demonstrate (i) how our approach can solve the requirements for generating surface and wall representations of the flow channels, (ii) how any number of communications between flow channels can be specified in a consistent manner, and (iii) how well branches connected to the respective flow channels are handled. Finally, we discuss how our approach is a step forward to an automated generation of surface models for aortic dissections from raw 3D imaging segmentation masks.Item A Novel Approach for Exploring Annotated Data With Interactive Lenses(The Eurographics Association and John Wiley & Sons Ltd., 2021) Bettio, Fabio; Ahsan, Moonisa; Marton, Fabio; Gobbetti, Enrico; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonWe introduce a novel approach for assisting users in exploring 2D data representations with an interactive lens. Focus-andcontext exploration is supported by translating user actions to the joint adjustments in camera and lens parameters that ensure a good placement and sizing of the lens within the view. This general approach, implemented using standard device mappings, overcomes the limitations of current solutions, which force users to continuously switch from lens positioning and scaling to view panning and zooming. Navigation is further assisted by exploiting data annotations. In addition to traditional visual markups and information links, we associate to each annotation a lens configuration that highlights the region of interest. During interaction, an assisting controller determines the next best lens in the database based on the current view and lens parameters and the navigation history. Then, the controller interactively guides the user's lens towards the selected target and displays its annotation markup. As only one annotation markup is displayed at a time, clutter is reduced. Moreover, in addition to guidance, the navigation can also be automated to create a tour through the data. While our methods are generally applicable to general 2D visualization, we have implemented them for the exploration of stratigraphic relightable models. The capabilities of our approach are demonstrated in cultural heritage use cases. A user study has been performed in order to validate our approach.Item Thin-Volume Visualization on Curved Domains(The Eurographics Association and John Wiley & Sons Ltd., 2021) Herter, Felix; Hege, Hans-Christian; Hadwiger, Markus; Lepper, Verena; Baum, Daniel; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonThin, curved structures occur in many volumetric datasets. Their analysis using classical volume rendering is difficult because parts of such structures can bend away or hide behind occluding elements. This problem cannot be fully compensated by effective navigation alone, as structure-adapted navigation in the volume is cumbersome and only parts of the structure are visible in each view. We solve this problem by rendering a spatially transformed view of the volume so that an unobstructed visualization of the entire curved structure is obtained. As a result, simple and intuitive navigation becomes possible. The domain of the spatial transform is defined by a triangle mesh that is topologically equivalent to an open disc and that approximates the structure of interest. The rendering is based on ray-casting, in which the rays traverse the original volume. In order to carve out volumes of varying thicknesses, the lengths of the rays as well as the positions of the mesh vertices can be easily modified by interactive painting under view control. We describe a prototypical implementation and demonstrate the interactive visual inspection of complex structures from digital humanities, biology, medicine, and material sciences. The visual representation of the structure as a whole allows for easy inspection of interesting substructures in their original spatial context. Overall, we show that thin, curved structures in volumetric data can be excellently visualized using ray-casting-based volume rendering of transformed views defined by guiding surface meshes, supplemented by interactive, local modifications of ray lengths and vertex positions.