40-Issue 3
Permanent URI for this collection
Browse
Browsing 40-Issue 3 by Title
Now showing 1 - 20 of 45
Results Per Page
Sort Options
Item Accessible Visualization: Design Space, Opportunities, and Challenges(The Eurographics Association and John Wiley & Sons Ltd., 2021) Kim, Nam Wook; Joyner, Shakila Cherise; Riegelhuth, Amalia; Kim, Yea-Seul; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonVisualizations are now widely used across disciplines to understand and communicate data. The benefit of visualizations lies in leveraging our natural visual perception. However, the sole dependency on vision can produce unintended discrimination against people with visual impairments. While the visualization field has seen enormous growth in recent years, supporting people with disabilities is much less explored. In this work, we examine approaches to support this marginalized user group, focusing on visual disabilities. We collected and analyzed papers published for the last 20 years on visualization accessibility. We mapped a design space for accessible visualization that includes seven dimensions: user group, literacy task, chart type, interaction, information granularity, sensory modality, assistive technology. We described the current knowledge gap in light of the latest advances in visualization and presented a preliminary accessibility model by synthesizing findings from existing research. Finally, we reflected on the dimensions and discussed opportunities and challenges for future research.Item Animated Presentation of Static Infographics with InfoMotion(The Eurographics Association and John Wiley & Sons Ltd., 2021) Wang, Yun; Gao, Yi; Huang, Ray; Cui, Weiwei; Zhang, Haidong; Zhang, Dongmei; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonBy displaying visual elements logically in temporal order, animated infographics can help readers better understand layers of information expressed in an infographic. While many techniques and tools target the quick generation of static infographics, few support animation designs. We propose InfoMotion that automatically generates animated presentations of static infographics. We first conduct a survey to explore the design space of animated infographics. Based on this survey, InfoMotion extracts graphical properties of an infographic to analyze the underlying information structures; then, animation effects are applied to the visual elements in the infographic in temporal order to present the infographic. The generated animations can be used in data videos or presentations. We demonstrate the utility of InfoMotion with two example applications, including mixed-initiative animation authoring and animation recommendation. To further understand the quality of the generated animations, we conduct a user study to gather subjective feedback on the animations generated by InfoMotion.Item AutoClips: An Automatic Approach to Video Generation from Data Facts(The Eurographics Association and John Wiley & Sons Ltd., 2021) Shi, Danqing; Sun, Fuling; Xu, Xinyue; Lan, Xingyu; Gotz, David; Cao, Nan; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonData videos, a storytelling genre that visualizes data facts with motion graphics, are gaining increasing popularity among data journalists, non-profits, and marketers to communicate data to broad audiences. However, crafting a data video is often timeconsuming and asks for various domain knowledge such as data visualization, animation design, and screenwriting. Existing authoring tools usually enable users to edit and compose a set of templates manually, which still cost a lot of human effort. To further lower the barrier of creating data videos, this work introduces a new approach, AutoClips, which can automatically generate data videos given the input of a sequence of data facts. We built AutoClips through two stages. First, we constructed a fact-driven clip library where we mapped ten data facts to potential animated visualizations respectively by analyzing 230 online data videos and conducting interviews. Next, we constructed an algorithm that generates data videos from data facts through three steps: selecting and identifying the optimal clip for each of the data facts, arranging the clips into a coherent video, and optimizing the duration of the video. The results from two user studies indicated that the data videos generated by AutoClips are comprehensible, engaging, and have comparable quality with human-made videos.Item Automatic Improvement of Continuous Colormaps in Euclidean Colorspaces(The Eurographics Association and John Wiley & Sons Ltd., 2021) Nardini, Pascal; Chen, Min; Böttinger, Michael; Scheuermann, Gerik; Bujack, Roxana; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonColormapping is one of the simplest and most widely used data visualization methods within and outside the visualization community. Uniformity, order, discriminative power, and smoothness of continuous colormaps are the most important criteria for evaluating and potentially improving colormaps. We present a local and a global automatic optimization algorithm in Euclidean color spaces for each of these design rules in this work. As a foundation for our optimization algorithms, we used the CCC-Tool colormap specification (CMS); each algorithm has been implemented in this tool. In addition to synthetic examples that demonstrate each method's effect, we show the outcome of some of the methods applied to a typhoon simulation.Item Boundary Objects in Design Studies: Reflections on the Collaborative Creation of Isochrone Maps(The Eurographics Association and John Wiley & Sons Ltd., 2021) Vuillemot, Romain; Rivière, Philippe; Beignon, Anaëlle; Tabard, Aurélien; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonWe propose to take an artifact-centric approach to design studies by leveraging the concept of boundary object. Design studies typically focus on processes and articulate design decisions in a project-specific context with a goal of transferability. We argue that design studies could benefit from paying attention to the material conditions in which teams collaborate to reach design outcomes. We report on a design study of isochrone maps following cartographic generalization principles. Focusing on boundary objects enables us to characterize five categories of artifacts and tools that facilitated collaboration between actors involved in the design process (structured collections, structuring artifacts, process-centric artifacts, generative artifacts, and bridging artifacts). We found that artifacts such as layered maps and map collections played a unifying role for our inter-disciplinary team. We discuss how such artifacts can be pivotal in the design process. Finally, we discuss how considering boundary objects could improve the transferability of design study results, and support reflection on inter-disciplinary collaboration in the domain of Information Visualization.Item ClusterSets: Optimizing Planar Clusters in Categorical Point Data(The Eurographics Association and John Wiley & Sons Ltd., 2021) Geiger, Jakob; Cornelsen, Sabine; Haunert, Jan-Henrik; Kindermann, Philipp; Mchedlidze, Tamara; Nöllenburg, Martin; Okamoto, Yoshio; Wolff, Alexander; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonIn geographic data analysis, one is often given point data of different categories (such as facilities of a university categorized by department). Drawing upon recent research on set visualization, we want to visualize category membership by connecting points of the same category with visual links. Existing approaches that follow this path usually insist on connecting all members of a category, which may lead to many crossings and visual clutter. We propose an approach that avoids crossings between connections of different categories completely. Instead of connecting all data points of the same category, we subdivide categories into smaller, local clusters where needed. We do a case study comparing the legibility of drawings produced by our approach and those by existing approaches. In our problem formulation, we are additionally given a graph G on the data points whose edges express some sort of proximity. Our aim is to find a subgraph G0 of G with the following properties: (i) edges connect only data points of the same category, (ii) no two edges cross, and (iii) the number of connected components (clusters) is minimized. We then visualize the clusters in G0. For arbitrary graphs, the resulting optimization problem, Cluster Minimization, is NP-hard (even to approximate). Therefore, we introduce two heuristics. We do an extensive benchmark test on real-world data. Comparisons with exact solutions indicate that our heuristics do astonishing well for certain relative-neighborhood graphs.Item Color Nameability Predicts Inference Accuracy in Spatial Visualizations(The Eurographics Association and John Wiley & Sons Ltd., 2021) Reda, Khairi; Salvi, Amey A.; Gray, Jack; Papka, Michael E.; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonColor encoding is foundational to visualizing quantitative data. Guidelines for colormap design have traditionally emphasized perceptual principles, such as order and uniformity. However, colors also evoke cognitive and linguistic associations whose role in data interpretation remains underexplored. We study how two linguistic factors, name salience and name variation, affect people's ability to draw inferences from spatial visualizations. In two experiments, we found that participants are better at interpreting visualizations when viewing colors with more salient names (e.g., prototypical 'blue', 'yellow', and 'red' over 'teal', 'beige', and 'maroon'). The effect was robust across four visualization types, but was more pronounced in continuous (e.g., smooth geographical maps) than in similar discrete representations (e.g., choropleths). Participants' accuracy also improved as the number of nameable colors increased, although the latter had a less robust effect. Our findings suggest that color nameability is an important design consideration for quantitative colormaps, and may even outweigh traditional perceptual metrics. In particular, we found that the linguistic associations of color are a better predictor of performance than the perceptual properties of those colors. We discuss the implications and outline research opportunities. The data and materials for this study are available at https://osf.io/asb7nItem CommAID: Visual Analytics for Communication Analysis through Interactive Dynamics Modeling(The Eurographics Association and John Wiley & Sons Ltd., 2021) Fischer, Maximilian T.; Seebacher, Daniel; Sevastjanova, Rita; Keim, Daniel A.; El-Assady, Mennatallah; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonCommunication consists of both meta-information as well as content. Currently, the automated analysis of such data often focuses either on the network aspects via social network analysis or on the content, utilizing methods from text-mining. However, the first category of approaches does not leverage the rich content information, while the latter ignores the conversation environment and the temporal evolution, as evident in the meta-information. In contradiction to communication research, which stresses the importance of a holistic approach, both aspects are rarely applied simultaneously, and consequently, their combination has not yet received enough attention in automated analysis systems. In this work, we aim to address this challenge by discussing the difficulties and design decisions of such a path as well as contribute CommAID, a blueprint for a holistic strategy to communication analysis. It features an integrated visual analytics design to analyze communication networks through dynamics modeling, semantic pattern retrieval, and a user-adaptable and problem-specific machine learning-based retrieval system. An interactive multi-level matrix-based visualization facilitates a focused analysis of both network and content using inline visuals supporting cross-checks and reducing context switches. We evaluate our approach in both a case study and through formative evaluation with eight law enforcement experts using a real-world communication corpus. Results show that our solution surpasses existing techniques in terms of integration level and applicability. With this contribution, we aim to pave the path for a more holistic approach to communication analysis.Item Compressive Neural Representations of Volumetric Scalar Fields(The Eurographics Association and John Wiley & Sons Ltd., 2021) Lu, Yuzhe; Jiang, Kairong; Levine, Joshua A.; Berger, Matthew; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonWe present an approach for compressing volumetric scalar fields using implicit neural representations. Our approach represents a scalar field as a learned function, wherein a neural network maps a point in the domain to an output scalar value. By setting the number of weights of the neural network to be smaller than the input size, we achieve compressed representations of scalar fields, thus framing compression as a type of function approximation. Combined with carefully quantizing network weights, we show that this approach yields highly compact representations that outperform state-of-the-art volume compression approaches. The conceptual simplicity of our approach enables a number of benefits, such as support for time-varying scalar fields, optimizing to preserve spatial gradients, and random-access field evaluation. We study the impact of network design choices on compression performance, highlighting how simple network architectures are effective for a broad range of volumes.Item Daisen: A Framework for Visualizing Detailed GPU Execution(The Eurographics Association and John Wiley & Sons Ltd., 2021) Sun, Yifan; Zhang, Yixuan; Mosallaei, Ali; Shah, Michael D.; Dunne, Cody; Kaeli, David; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonGraphics Processing Units (GPUs) have been widely used to accelerate artificial intelligence, physics simulation, medical imaging, and information visualization applications. To improve GPU performance, GPU hardware designers need to identify performance issues by inspecting a huge amount of simulator-generated traces. Visualizing the execution traces can reduce the cognitive burden of users and facilitate making sense of behaviors of GPU hardware components. In this paper, we first formalize the process of GPU performance analysis and characterize the design requirements of visualizing execution traces based on a survey study and interviews with GPU hardware designers. We contribute data and task abstraction for GPU performance analysis. Based on our task analysis, we propose Daisen, a framework that supports data collection from GPU simulators and provides visualization of the simulator-generated GPU execution traces. Daisen features a data abstraction and trace format that can record simulator-generated GPU execution traces. Daisen also includes a web-based visualization tool that helps GPU hardware designers examine GPU execution traces, identify performance bottlenecks, and verify performance improvement. Our qualitative evaluation with GPU hardware designers demonstrates that the design of Daisen reflects the typical workflow of GPU hardware designers. Using Daisen, participants were able to effectively identify potential performance bottlenecks and opportunities for performance improvement. The open-sourced implementation of Daisen can be found at gitlab.com/akita/vis. Supplemental materials including a demo video, survey questions, evaluation study guide, and post-study evaluation survey are available at osf.io/j5ghq.Item A Deeper Understanding of Visualization-Text Interplay in Geographic Data-driven Stories(The Eurographics Association and John Wiley & Sons Ltd., 2021) Latif, Shahid; Chen, Siming; Beck, Fabian; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonData-driven stories comprise of visualizations and a textual narrative. The two representations coexist and complement each other. Although existing research has explored the design strategies and structure of such stories, it remains an open research question how the two representations play together on a detailed level and how they are linked with each other. In this paper, we aim at understanding the fine-grained interplay of text and visualizations in geographic data-driven stories. We focus on geographic content as it often includes complex spatiotemporal data presented as versatile visualizations and rich textual descriptions. We conduct a qualitative empirical study on 22 stories collected from a variety of news media outlets; 10 of the stories report the COVID-19 pandemic, the others cover diverse topics. We investigate the role of every sentence and visualization within the narrative to reveal how they reference each other and interact. Moreover, we explore the positioning and sequence of various parts of the narrative to find patterns that further consolidate the stories. Drawing from the findings, we discuss study implications with respect to best practices and possibilities to automate the report generation.Item Design Patterns and Trade-Offs in Responsive Visualization for Communication(The Eurographics Association and John Wiley & Sons Ltd., 2021) Kim, Hyeok; Moritz, Dominik; Hullman, Jessica; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonIncreased access to mobile devices motivates the need to design communicative visualizations that are responsive to varying screen sizes. However, relatively little design guidance or tooling is currently available to authors. We contribute a detailed characterization of responsive visualization strategies in communication-oriented visualizations, identifying 76 total strategies by analyzing 378 pairs of large screen (LS) and small screen (SS) visualizations from online articles and reports. Our analysis distinguishes between the Targets of responsive visualization, referring to what elements of a design are changed and Actions representing how targets are changed. We identify key trade-offs related to authors' need to maintain graphical density, referring to the amount of information per pixel, while also maintaining the ''message'' or intended takeaways for users of a visualization. We discuss implications of our findings for future visualization tool design to support responsive transformation of visualization designs, including requirements for automated recommenders for communication-oriented responsive visualizations.Item Design Space of Origin-Destination Data Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2021) Tennekes, Martijn; Chen, Min; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonVisualization is an essential tool for observing and analyzing origin-destination (OD) data, which encodes flows between geographic locations, e.g., in applications concerning commuting, migration, and transport of goods. However, depicting OD data often encounter issues of cluttering and occlusion. To address these issues, many visual designs feature data abstraction and visual abstraction, such as node aggregation and edge bundling, resulting in information loss. The recent theoretical and empirical developments in visualization have substantiated the merits of such abstraction, while confirming that viewers' knowledge can alleviate the negative impact due to information loss. It is thus desirable to map out different ways of losing and adding information in origin-destination data visualization (ODDV).We therefore formulate a new design space of ODDV based on the categorization of informative operations on OD data in data abstraction and visual abstraction. We apply this design space to existing ODDV methods, outline strategies for exploring the design space, and suggest ideas for further exploration.Item EuroVis 2021 CGF 40-3: Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2021) Borgo, Rita; Marai, G. Elisabeta; Landesberger, Tatiana von; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonItem Exploring Multi-dimensional Data via Subset Embedding(The Eurographics Association and John Wiley & Sons Ltd., 2021) Xie, Peng; Tao, Wenyuan; Li, Jie; Huang, Wentao; Chen, Siming; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonMulti-dimensional data exploration is a classic research topic in visualization. Most existing approaches are designed for identifying record patterns in dimensional space or subspace. In this paper, we propose a visual analytics approach to exploring subset patterns. The core of the approach is a subset embedding network (SEN) that represents a group of subsets as uniformlyformatted embeddings. We implement the SEN as multiple subnets with separate loss functions. The design enables to handle arbitrary subsets and capture the similarity of subsets on single features, thus achieving accurate pattern exploration, which in most cases is searching for subsets having similar values on few features. Moreover, each subnet is a fully-connected neural network with one hidden layer. The simple structure brings high training efficiency. We integrate the SEN into a visualization system that achieves a 3-step workflow. Specifically, analysts (1) partition the given dataset into subsets, (2) select portions in a projected latent space created using the SEN, and (3) determine the existence of patterns within selected subsets. Generally, the system combines visualizations, interactions, automatic methods, and quantitative measures to balance the exploration flexibility and operation efficiency, and improve the interpretability and faithfulness of the identified patterns. Case studies and quantitative experiments on multiple open datasets demonstrate the general applicability and effectiveness of our approach.Item Guided Stable Dynamic Projections(The Eurographics Association and John Wiley & Sons Ltd., 2021) Vernier, Eduardo Faccin; Comba, João L. D.; Telea, Alexandru C.; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonProjections aim to convey the relationships and similarity of high-dimensional data in a low-dimensional representation. Most such techniques are designed for static data. When used for time-dependent data, they usually fail to create a stable and suitable low dimensional representation. We propose two dynamic projection methods (PCD-tSNE and LD-tSNE) that use global guides to steer projection points. This avoids unstable movement that does not encode data dynamics while keeping t-SNE's neighborhood preservation ability. PCD-tSNE scores a good balance between stability, neighborhood preservation, and distance preservation, while LD-tSNE allows creating stable and customizable projections. We compare our methods to 11 other techniques using quality metrics and datasets provided by a recent benchmark for dynamic projections.Item Hornero: Thunderstorms Characterization using Visual Analytics(The Eurographics Association and John Wiley & Sons Ltd., 2021) Diehl, Alexandra; Pelorosso, Rodrigo; Ruiz, Juan; Pajarola, Renato; Gröller, M. Eduard; Bruckner, Stefan; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonAnalyzing the evolution of thunderstorms is critical in determining the potential for the development of severe weather events. Existing visualization systems for short-term weather forecasting (nowcasting) allow for basic analysis and prediction of storm developments. However, they lack advanced visual features for efficient decision-making. We developed a visual analytics tool for the detection of hazardous thunderstorms and their characterization, using a visual design centered on a reformulated expert task workflow that includes visual features to overview storms and quickly identify high-impact weather events, a novel storm graph visualization to inspect and analyze the storm structure, as well as a set of interactive views for efficient identification of similar storm cells (known as analogs) in historical data and their use for nowcasting. Our tool was designed with and evaluated by meteorologists and expert forecasters working in short-term operational weather forecasting of severe weather events. Results show that our solution suits the forecasters' workflow. Our visual design is expressive, easy to use, and effective for prompt analysis and quick decision-making in the context of short-range operational weather forecasting.Item Implicit Modeling of Patient-Specific Aortic Dissections with Elliptic Fourier Descriptors(The Eurographics Association and John Wiley & Sons Ltd., 2021) Mistelbauer, Gabriel; Rössl, Christian; Bäumler, Kathrin; Preim, Bernhard; Fleischmann, Dominik; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonAortic dissection is a life-threatening vascular disease characterized by abrupt formation of a new flow channel (false lumen) within the aortic wall. Survivors of the acute phase remain at high risk for late complications, such as aneurysm formation, rupture, and death. Morphologic features of aortic dissection determine not only treatment strategies in the acute phase (surgical vs. endovascular vs. medical), but also modulate the hemodynamics in the false lumen, ultimately responsible for late complications. Accurate description of the true and false lumen, any communications across the dissection membrane separating the two lumina, and blood supply from each lumen to aortic branch vessels is critical for risk prediction. Patient-specific surface representations are also a prerequisite for hemodynamic simulations, but currently require time-consuming manual segmentation of CT data. We present an aortic dissection cross-sectional model that captures the varying aortic anatomy, allowing for reliable measurements and creation of high-quality surface representations. In contrast to the traditional spline-based cross-sectional model, we employ elliptic Fourier descriptors, which allows users to control the accuracy of the cross-sectional contour of a flow channel. We demonstrate (i) how our approach can solve the requirements for generating surface and wall representations of the flow channels, (ii) how any number of communications between flow channels can be specified in a consistent manner, and (iii) how well branches connected to the respective flow channels are handled. Finally, we discuss how our approach is a step forward to an automated generation of surface models for aortic dissections from raw 3D imaging segmentation masks.Item iQUANT: Interactive Quantitative Investment Using Sparse Regression Factors(The Eurographics Association and John Wiley & Sons Ltd., 2021) Yue, Xuanwu; Gu, Qiao; Wang, Deyun; Qu, Huamin; Wang, Yong; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonThe model-based investing using financial factors is evolving as a principal method for quantitative investment. The main challenge lies in the selection of effective factors towards excess market returns. Existing approaches, either hand-picking factors or applying feature selection algorithms, do not orchestrate both human knowledge and computational power. This paper presents iQUANT, an interactive quantitative investment system that assists equity traders to quickly spot promising financial factors from initial recommendations suggested by algorithmic models, and conduct a joint refinement of factors and stocks for investment portfolio composition. We work closely with professional traders to assemble empirical characteristics of ''good'' factors and propose effective visualization designs to illustrate the collective performance of financial factors, stock portfolios, and their interactions. We evaluate iQUANT through a formal user study, two case studies, and expert interviews, using a real stock market dataset consisting of 3000 stocks x 6000 days x 56 factors.Item Learning Contextualized User Preferences for Co-Adaptive Guidance in Mixed-Initiative Topic Model Refinement(The Eurographics Association and John Wiley & Sons Ltd., 2021) Sperrle, Fabian; Schäfer, Hanna; Keim, Daniel; El-Assady, Mennatallah; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonMixed-initiative visual analytics systems support collaborative human-machine decision-making processes. However, many multiobjective optimization tasks, such as topic model refinement, are highly subjective and context-dependent. Hence, systems need to adapt their optimization suggestions throughout the interactive refinement process to provide efficient guidance. To tackle this challenge, we present a technique for learning context-dependent user preferences and demonstrate its applicability to topic model refinement. We deploy agents with distinct associated optimization strategies that compete for the user's acceptance of their suggestions. To decide when to provide guidance, each agent maintains an intelligible, rule-based classifier over context vectorizations that captures the development of quality metrics between distinct analysis states. By observing implicit and explicit user feedback, agents learn in which contexts to provide their specific guidance operation. An agent in topic model refinement might, for example, learn to react to declining model coherence by suggesting to split a topic. Our results confirm that the rules learned by agents capture contextual user preferences. Further, we show that the learned rules are transferable between similar datasets, avoiding common cold-start problems and enabling a continuous refinement of agents across corpora.
- «
- 1 (current)
- 2
- 3
- »