Volume 35 (2016)
Permanent URI for this community
Browse
Browsing Volume 35 (2016) by Subject "and texture"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Compressed Multiresolution Hierarchies for High-Quality Precomputed Shadows(The Eurographics Association and John Wiley & Sons Ltd., 2016) Scandolo, Leonardo; Bauszat, Pablo; Eisemann, Elmar; Joaquim Jorge and Ming LinThe quality of shadow mapping is traditionally limited by texture resolution. We present a novel lossless compression scheme for high-resolution shadow maps based on precomputed multiresolution hierarchies. Traditional multiresolution trees can compactly represent homogeneous regions of shadow maps at coarser levels, but require many nodes for fine details. By conservatively adapting the depth map, we can significantly reduce the tree complexity. Our proposed method offers high compression rates, avoids quantization errors, exploits coherency along all data dimensions, and is well-suited for GPU architectures. Our approach can be applied for coherent shadow maps as well, enabling several applications, including high-quality soft shadows and dynamic lights moving on fixed-trajectories.Item Fast Filtering of Reflection Probes(The Eurographics Association and John Wiley & Sons Ltd., 2016) Manson, Josiah; Sloan, Peter-Pike; Elmar Eisemann and Eugene FiumeGame and movie studios are switching to physically based rendering en masse, but physically accurate filter convolution is difficult to do quickly enough to update reflection probes in real-time. Cubemap filtering has also become a bottleneck in the content processing pipeline. We have developed a two-pass filtering algorithm that is specialized for isotropic reflection kernels, is several times faster than existing algorithms, and produces superior results. The first pass uses a quadratic b-spline recurrence that is modified for cubemaps. The second pass uses lookup tables to determine optimal sampling in terms of placement, mipmap level, and coefficients. Filtering a full 128 2 cubemap on an NVIDIA GeForce GTX 980 takes between 160 μs and 730 μs with out method, depending on the desired quality.Item Merged Multiresolution Hierarchies for Shadow Map Compression(The Eurographics Association and John Wiley & Sons Ltd., 2016) Scandolo, Leonardo; Bauszat, Pablo; Eisemann, Elmar; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiMultiresolution Hierarchies (MH) and Directed Acyclic Graphs (DAG) are two recent approaches for the compression of highresolution shadow information. In this paper, we introduce Merged Multiresolution Hierarchies (MMH), a novel data structure that unifies both concepts. An MMH leverages both hierarchical homogeneity exploited in MHs, as well as topological similarities exploited in DAG representations. We propose an efficient hash-based technique to quickly identify and remove redundant subtree instances in a modified relative MH representation. Our solution remains lossless and significantly improves the compression rate compared to both preceding shadow map compression algorithms, while retaining the full run-time performance of traditional MH representations.Item Minimal Sampling for Effective Acquisition of Anisotropic BRDFs(The Eurographics Association and John Wiley & Sons Ltd., 2016) Vávra, Radomir; Filip, Jiri; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiBRDFs are commonly used for material appearance representation in applications ranging from gaming and the movie industry, to product design and specification. Most applications rely on isotropic BRDFs due to their better availability as a result of their easier acquisition process. On the other hand, anisotropic BRDF due to their structure-dependent anisotropic highlights, are more challenging to measure and process. This paper thus leverages the measurement process of anisotropic BRDF by representing such BRDF by the collection of isotropic BRDFs. Our method relies on an anisotropic BRDF database decomposition into training isotropic slices forming a linear basis, where appropriate sparse samples are identified using numerical optimization. When an unknown anisotropic BRDF is measured, these samples are repeatably captured in a small set of azimuthal directions. All collected samples are then used for an entire measured BRDF reconstruction from a linear isotropic basis. Typically, below 100 samples are sufficient for the capturing of main visual features of complex anisotropic materials, and we provide a minimal directional samples to be regularly measured at each sample rotation. We conclude, that even simple setups relying on five bidirectional samples (maximum of five stationary sensors/lights) in combination with eight rotations (rotation stage for specimen) can yield a promising reconstruction of anisotropic behavior. Next, we outline extension of the proposed approach to adaptive sampling of anisotropic BRDF to gain even better performance. Finally, we show that our method allows using standard geometries, including industrial multi-angle reflectometers, for the fast measurement of anisotropic BRDFs.Item Near-Instant Capture of High-Resolution Facial Geometry and Reflectance(The Eurographics Association and John Wiley & Sons Ltd., 2016) Fyffe, Graham; Graham, Paul; Tunwattanapong, Borom; Ghosh, Abhijeet; Debevec, Paul; Joaquim Jorge and Ming LinWe present a near-instant method for acquiring facial geometry and reflectance using a set of commodity DSLR cameras and flashes. Our setup consists of twenty-four cameras and six flashes which are fired in rapid succession with subsets of the cameras. Each camera records only a single photograph and the total capture time is less than the 67ms blink reflex. The cameras and flashes are specially arranged to produce an even distribution of specular highlights on the face. We employ this set of acquired images to estimate diffuse color, specular intensity, specular exponent, and surface orientation at each point on the face. We further refine the facial base geometry obtained from multi-view stereo using estimated diffuse and specular photometric information. This allows final submillimeter surface mesostructure detail to be obtained via shape-from-specularity. The final system uses commodity components and produces models suitable for authoring high-quality digital human characters.Item A Survey of Real‐Time Crowd Rendering(© 2016 The Eurographics Association and John Wiley & Sons Ltd., 2016) Beacco, A.; Pelechano, N.; Andújar, C.; Chen, Min and Zhang, Hao (Richard)In this survey we review, classify and compare existing approaches for real‐time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level‐of‐detail (LoD) rendering of animated characters, including polygon‐based, point‐based, and image‐based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo‐instancing, palette skinning, and dynamic key‐pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.In this survey we review, classify and compare existing approaches for real‐time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level‐of‐detail (LoD) rendering of animated characters, including polygon‐based, point‐based, and image‐based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters.