Volume 35 (2016)
Permanent URI for this community
Browse
Browsing Volume 35 (2016) by Title
Now showing 1 - 20 of 236
Results Per Page
Sort Options
Item 3D Body Shapes Estimation from Dressed-Human Silhouettes(The Eurographics Association and John Wiley & Sons Ltd., 2016) Song, Dan; Tong, Ruofeng; Chang, Jian; Yang, Xiaosong; Tang, Min; Zhang, Jian Jun; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiEstimation of 3D body shapes from dressed-human photos is an important but challenging problem in virtual fitting. We propose a novel automatic framework to efficiently estimate 3D body shapes under clothes. We construct a database of 3D naked and dressed body pairs, based on which we learn how to predict 3D positions of body landmarks (which further constrain a parametric human body model) automatically according to dressed-human silhouettes. Critical vertices are selected on 3D registered human bodies as landmarks to represent body shapes, so as to avoid the time-consuming vertices correspondences finding process for parametric body reconstruction. Our method can estimate 3D body shapes from dressed-human silhouettes within 4 seconds, while the fastest method reported previously need 1 minute. In addition, our estimation error is within the size tolerance for clothing industry. We dress 6042 naked bodies with 3 sets of common clothes by physically based cloth simulation technique. To the best of our knowledge, We are the first to construct such a database containing 3D naked and dressed body pairs and our database may contribute to the areas of human body shapes estimation and cloth simulation.Item Adapting Feature Curve Networks to a Prescribed Scale(The Eurographics Association and John Wiley & Sons Ltd., 2016) Gehre, Anne; Lim, Isaak; Kobbelt, Leif; Joaquim Jorge and Ming LinFeature curves on surface meshes are usually defined solely based on local shape properties such as dihedral angles and principal curvatures. From the application perspective, however, the meaningfulness of a network of feature curves also depends on a global scale parameter that takes the distance between feature curves into account, i.e., on a coarse scale, nearby feature curves should be merged or suppressed if the surface region between them is not representable at the given scale/resolution. In this paper, we propose a computational approach to the intuitive notion of scale conforming feature curve networks where the density of feature curves on the surface adapts to a global scale parameter. We present a constrained global optimization algorithm that computes scale conforming feature curve networks by eliminating curve segments that represent surface features, which are not compatible to the prescribed scale. To demonstrate the usefulness of our approach we apply isotropic and anisotropic remeshing schemes that take our feature curve networks as input. For a number of example meshes, we thus generate high quality shape approximations at various levels of detail.Item Adaptive Bas-relief Generation from 3D Object under Illumination(The Eurographics Association and John Wiley & Sons Ltd., 2016) Zhang, Yu-Wei; Zhang, Caiming; Wang, Wenping; Chen, Yanzhao; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiBas-relief is designed to provide 3D perception for the viewers under illumination. For the problem of bas-relief generation from 3D object, most existing methods ignore the influence of illumination on bas-relief appearance. In this paper, we propose a novel method that adaptively generate bas-reliefs with respect to illumination conditions. Given a 3D object and its target appearance, our method finds an adaptive surface that preserves the appearance of the input. We validate our approach through a variety of applications. Experimental results indicate that the proposed approach is effective in producing bas-reliefs with desired appearance under illumination.Item Adaptive Image-Space Sampling for Gaze-Contingent Real-time Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2016) Stengel, Michael; Grogorick, Steve; Eisemann, Martin; Magnor, Marcus; Elmar Eisemann and Eugene FiumeWith ever-increasing display resolution for wide field-of-view displays-such as head-mounted displays or 8k projectors- shading has become the major computational cost in rasterization. To reduce computational effort, we propose an algorithm that only shades visible features of the image while cost-effectively interpolating the remaining features without affecting perceived quality. In contrast to previous approaches we do not only simulate acuity falloff but also introduce a sampling scheme that incorporates multiple aspects of the human visual system: acuity, eye motion, contrast (stemming from geometry, material or lighting properties), and brightness adaptation. Our sampling scheme is incorporated into a deferred shading pipeline to shade the image's perceptually relevant fragments while a pull-push algorithm interpolates the radiance for the rest of the image. Our approach does not impose any restrictions on the performed shading. We conduct a number of psycho-visual experiments to validate scene- and task-independence of our approach. The number of fragments that need to be shaded is reduced by 50 % to 80 %. Our algorithm scales favorably with increasing resolution and field-of-view, rendering it well-suited for head-mounted displays and wide-field-of-view projection.Item Advection-Based Function Matching on Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2016) Azencot, Omri; Vantzos, Orestis; Ben-Chen, Mirela; Maks Ovsjanikov and Daniele PanozzoA tangent vector field on a surface is the generator of a smooth family of maps from the surface to itself, known as the flow. Given a scalar function on the surface, it can be transported, or advected, by composing it with a vector field's flow. Such transport is exhibited by many physical phenomena, e.g., in fluid dynamics. In this paper, we are interested in the inverse problem: given source and target functions, compute a vector field whose flow advects the source to the target. We propose a method for addressing this problem, by minimizing an energy given by the advection constraint together with a regularizing term for the vector field. Our approach is inspired by a similar method in computational anatomy, known as LDDMM, yet leverages the recent framework of functional vector fields for discretizing the advection and the flow as operators on scalar functions. The latter allows us to efficiently generalize LDDMM to curved surfaces, without explicitly computing the flow lines of the vector field we are optimizing for. We show two approaches for the solution: using linear advection with multiple vector fields, and using non-linear advection with a single vector field. We additionally derive an approximated gradient of the corresponding energy, which is based on a novel vector field transport operator. Finally, we demonstrate applications of our machinery to intrinsic symmetry analysis, function interpolation and map improvement.Item Aesthetic Rating and Color Suggestion for Color Palettes(The Eurographics Association and John Wiley & Sons Ltd., 2016) Kita, Naoki; Miyata, Kazunori; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiA model to rate color combinations that considers human aesthetic preferences is proposed. The proposed method does not assume that a color palette has a specific number of colors, i.e., input is not restricted to a two-, three-, or five-color palettes. We extract features from a color palette whose size does not depend on the number of colors in the palette. The proposed rating prediction model is trained using a human color preference dataset. The model allows a user to extend a color palette, e.g., from three colors to five or seven colors, while retaining color harmony. In addition, we present a color search scheme for a given palette and a customized version of the proposed model for a specific color tone. We demonstrate that the proposed model can also be applied to various palette-based applications.Item Anaglyph Caustics with Motion Parallax(The Eurographics Association and John Wiley & Sons Ltd., 2016) Lancelle, Marcel; Martin, Tobias; Solenthaler, Barbara; Gross, Markus; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiIn this paper we present a method to model and simulate a lens such that its caustic reveals a stereoscopic 3D image when viewed through anaglyph glasses. By interpreting lens dispersion as stereoscopic disparity, our method optimizes the shape and arrangement of prisms constituting the lens, such that the resulting anaglyph caustic corresponds to a given input image defined by intensities and disparities. In addition, a slight change of the lens' distance to the screen causes a 3D parallax effect that can also be perceived without glasses. Our proposed relaxation method carefully balances the resulting pixel intensity and disparity error, while taking the subsequent physical fabrication process into account. We demonstrate our method on a representative set of input images and evaluate the anaglyph caustics using multi-spectral photon tracing. We further show the fabrication of prototype lenses with a laser cutter as a proof of concept.Item Animation Setup Transfer for 3D Characters(The Eurographics Association and John Wiley & Sons Ltd., 2016) Avril, Quentin; Ghafourzadeh, Donya; Ramachandran, Srinivasan; Fallahdoust, Sahel; Ribet, Sarah; Dionne, Olivier; Lasa, Martin de; Paquette, Eric; Joaquim Jorge and Ming LinWe present a general method for transferring skeletons and skinning weights between characters with distinct mesh topologies. Our pipeline takes as inputs a source character rig (consisting of a mesh, a transformation hierarchy of joints, and skinning weights) and a target character mesh. From these inputs, we compute joint locations and orientations that embed the source skeleton in the target mesh, as well as skinning weights to bind the target geometry to the new skeleton. Our method consists of two key steps. We first compute the geometric correspondence between source and target meshes using a semi-automatic method relying on a set of markers. The resulting geometric correspondence is then used to formulate attribute transfer as an energy minimization and filtering problem. We demonstrate our approach on a variety of source and target bipedal characters, varying in mesh topology and morphology. Several examples demonstrate that the target characters behave well when animated with either forward or inverse kinematics. Via these examples, we show that our method preserves subtle artistic variations; spatial relationships between geometry and joints, as well as skinning weight details, are accurately maintained. Our proposed pipeline opens up many exciting possibilities to quickly animate novel characters by reusing existing production assets.Item Anisotropic Diffusion Descriptors(The Eurographics Association and John Wiley & Sons Ltd., 2016) Boscaini, Davide; Masci, Jonathan; Rodolà, Emanuele; Bronstein, Michael M.; Cremers, Daniel; Joaquim Jorge and Ming LinSpectral methods have recently gained popularity in many domains of computer graphics and geometry processing, especially shape processing, computation of shape descriptors, distances, and correspondence. Spectral geometric structures are intrinsic and thus invariant to isometric deformations, are efficiently computed, and can be constructed on shapes in different representations. A notable drawback of these constructions, however, is that they are isotropic, i.e., insensitive to direction. In this paper, we show how to construct direction-sensitive spectral feature descriptors using anisotropic diffusion on meshes and point clouds. The core of our construction are directed local kernels acting similarly to steerable filters, which are learned in a task-specific manner. Remarkably, while being intrinsic, our descriptors allow to disambiguate reflection symmetries. We show the application of anisotropic descriptors for problems of shape correspondence on meshes and point clouds, achieving results significantly better than state-of-the-art methods.Item Anisotropic Strain Limiting for Quadrilateral and Triangular Cloth Meshes(Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd., 2016) Ma, Guanghui; Ye, Juntao; Li, Jituo; Zhang, Xiaopeng; Chen, Min and Zhang, Hao (Richard)The cloth simulation systems often suffer from excessive extension on the polygonal mesh, so an additional strain‐limiting process is typically used as a remedy in the simulation pipeline. A cloth model can be discretized as either a quadrilateral mesh or a triangular mesh, and their strains are measured differently. The edge‐based strain‐limiting method for a quadrilateral mesh creates anisotropic behaviour by nature, as discretization usually aligns the edges along the warp and weft directions. We improve this anisotropic technique by replacing the traditionally used equality constraints with inequality ones in the mathematical optimization, and achieve faster convergence. For a triangular mesh, the state‐of‐the‐art technique measures and constrains the strains along the two principal (and constantly changing) directions in a triangle, resulting in an isotropic behaviour which prohibits shearing. Based on the framework of inequality‐constrained optimization, we propose a warp and weft strain‐limiting formulation. This anisotropic model is more appropriate for textile materials that do not exhibit isotropic strain behaviour.The cloth simulation systems often suffer from excessive extension on the polygonal mesh, so an additional strain‐limiting process is typically used as a remedy in the simulation pipeline. A cloth model can be discretized as either a quadrilateral mesh or a triangular mesh, and their strains are measured differently. The edge‐based strain‐limiting method for a quadrilateral mesh creates anisotropic behaviour by nature, as discretization usually aligns the edges along the warp and weft directions.We improve this anisotropic technique by replacing the traditionally used equality constraints with inequality ones in the mathematical optimization, and achieve faster convergence. For a triangular mesh, the state‐of‐the‐art technique measures and constrains the strains along the two principal (and constantly changing) directions in a triangle, resulting in an isotropic behaviour which prohibits shearing. Based on the framework of inequality‐constrained optimization, we propose a warp and weft strain‐limiting formulation. This anisotropic model is more appropriate for textile materials that do not exhibit isotropic strain behaviour.Item Anisotropic Superpixel Generation Based on Mahalanobis Distance(The Eurographics Association and John Wiley & Sons Ltd., 2016) Cai, Yiqi; Guo, Xiaohu; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiSuperpixels have been widely used as a preprocessing step in various computer vision tasks. Spatial compactness and color homogeneity are the two key factors determining the quality of the superpixel representation. In this paper, these two objectives are considered separately and anisotropic superpixels are generated to better adapt to local image content. We develop a unimodular Gaussian generative model to guide the color homogeneity within a superpixel by learning local pixel color variations. It turns out maximizing the log-likelihood of our generative model is equivalent to solving a Centroidal Voronoi Tessellation (CVT) problem. Moreover, we provide the theoretical guarantee that the CVT result is invariant to affine illumination change, which makes our anisotropic superpixel generation algorithm well suited for image/video analysis in varying illumination environment. The effectiveness of our method in image/video superpixel generation is demonstrated through the comparison with other state-of-the-art methods.Item Appearance Harmonization for Single Image Shadow Removal(The Eurographics Association and John Wiley & Sons Ltd., 2016) Ma, Li-Qian; Wang, Jue; Shechtman, Eli; Sunkavalli, Kalyan; Hu, Shi-Min; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiShadow removal is a challenging problem and previous approaches often produce de-shadowed regions that are visually inconsistent with the rest of the image. We propose an automatic shadow region harmonization approach that makes the appearance of a de-shadowed region (produced using any previous technique) compatible with the rest of the image. We use a shadow-guided patch-based image synthesis approach that reconstructs the shadow region using patches sampled from nonshadowed regions. This result is then refined based on the reconstruction confidence to handle unique textures. Qualitative comparisons over a wide range of images, and a quantitative evaluation on a benchmark dataset show that our technique significantly improves upon the state-of-the-art.Item Arcs, Angles, or Areas: Individual Data Encodings in Pie and Donut Charts(The Eurographics Association and John Wiley & Sons Ltd., 2016) Skau, Drew; Kosara, Robert; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkPie and donut charts have been a hotly debated topic in the visualization community for some time now. Even though pie charts have been around for over 200 years, our understanding of the perceptual factors used to read data in them is still limited. Data is encoded in pie and donut charts in three ways: arc length, center angle, and segment area. For our first study, we designed variations of pie charts to test the importance of individual encodings for reading accuracy. In our second study, we varied the inner radius of a donut chart from a filled pie to a thin outline to test the impact of removing the central angle. Both studies point to angle being the least important visual cue for both charts, and the donut chart being as accurate as the traditional pie chart.Item Autocorrelation Descriptor for Efficient Co‐Alignment of 3D Shape Collections(Copyright © 2016 The Eurographics Association and John Wiley & Sons Ltd., 2016) Averkiou, Melinos; Kim, Vladimir G.; Mitra, Niloy J.; Chen, Min and Zhang, Hao (Richard)Co‐aligning a collection of shapes to a consistent pose is a common problem in shape analysis with applications in shape matching, retrieval and visualization. We observe that resolving among some orientations is easier than Others, for example, a common mistake for bicycles is to align front‐to‐back, while even the simplest algorithm would not erroneously pick orthogonal alignment. The key idea of our work is to analyse rotational autocorrelations of shapes to facilitate shape co‐alignment. In particular, we use such an autocorrelation measure of individual shapes to decide which shape pairs might have well‐matching orientations; and, if so, which configurations are likely to produce better alignments. This significantly prunes the number of alignments to be examined, and leads to an efficient, scalable algorithm that performs comparably to state‐of‐the‐art techniques on benchmark data sets, but requires significantly fewer computations, resulting in 2–16× speed improvement in our tests.Co‐aligning a collection of shapes to a consistent pose is a common problem in shape analysis with applications in shape matching, retrieval and visualization. We observe that resolving among some orientations is easier than Others, for example, a common mistake for bicycles is to align front‐to‐back, while even the simplest algorithm would not erroneously pick orthogonal alignment. The key idea of our work is to analyse rotational autocorrelations of shapes to facilitate shape co‐alignment. In particular, we use such an autocorrelation measure of individual shapes to decide which shape pairs might have well‐matching orientations; and, if so, which configurations are likely to produce better alignments. This significantly prunes the number of alignments to be examined, and leads to an efficient, scalable algorithm that performs comparably to state‐of‐the‐art techniques on benchmark data sets, but requires significantly fewer computations, resulting in 2‐16x speed improvement in our tests.Item Automatic Modeling of Urban Facades from Raw LiDAR Point Data(The Eurographics Association and John Wiley & Sons Ltd., 2016) Wang, Jun; Xu, Yabin; Remil, Oussama; Xie, Xingyu; Ye, Nan; Wei, Mingqiang; Eitan Grinspun and Bernd Bickel and Yoshinori DobashiModeling of urban facades from raw LiDAR point data remains active due to its challenging nature. In this paper, we propose an automatic yet robust 3D modeling approach for urban facades with raw LiDAR point clouds. The key observation is that building facades often exhibit repetitions and regularities. We hereby formulate repetition detection as an energy optimization problem with a global energy function balancing geometric errors, regularity and complexity of facade structures. As a result, repetitive structures are extracted robustly even in the presence of noise and missing data. By registering repetitive structures, missing regions are completed and thus the associated point data of structures are well consolidated. Subsequently, we detect the potential design intents (i.e., geometric constraints) within structures and perform constrained fitting to obtain the precise structure models. Furthermore, we apply structure alignment optimization to enforce position regularities and employ repetitions to infer missing structures. We demonstrate how the quality of raw LiDAR data can be improved by exploiting data redundancy, and discovering high level structural information (regularity and symmetry). We evaluate our modeling method on a variety of raw LiDAR scans to verify its robustness and effectiveness.Item Automatic Portrait Segmentation for Image Stylization(The Eurographics Association and John Wiley & Sons Ltd., 2016) Shen, Xiaoyong; Hertzmann, Aaron; Jia, Jiaya; Paris, Sylvain; Price, Brian; Shechtman, Eli; Sachs, Ian; Joaquim Jorge and Ming LinPortraiture is a major art form in both photography and painting. In most instances, artists seek to make the subject stand out from its surrounding, for instance, by making it brighter or sharper. In the digital world, similar effects can be achieved by processing a portrait image with photographic or painterly filters that adapt to the semantics of the image. While many successful user-guided methods exist to delineate the subject, fully automatic techniques are lacking and yield unsatisfactory results. Our paper first addresses this problem by introducing a new automatic segmentation algorithm dedicated to portraits. We then build upon this result and describe several portrait filters that exploit our automatic segmentation algorithm to generate high-quality portraits.Item AVOCADO: Visualization of Workflow-Derived Data Provenance for Reproducible Biomedical Research(The Eurographics Association and John Wiley & Sons Ltd., 2016) Stitz, Holger; Luger, Stefan; Streit, Marc; Gehlenborg, Nils; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkA major challenge in data-driven biomedical research lies in the collection and representation of data provenance information to ensure that findings are reproducibile. In order to communicate and reproduce multi-step analysis workflows executed on datasets that contain data for dozens or hundreds of samples, it is crucial to be able to visualize the provenance graph at different levels of aggregation. Most existing approaches are based on node-link diagrams, which do not scale to the complexity of typical data provenance graphs. In our proposed approach, we reduce the complexity of the graph using hierarchical and motif-based aggregation. Based on user action and graph attributes, a modular degree-of-interest (DoI) function is applied to expand parts of the graph that are relevant to the user. This interest-driven adaptive approach to provenance visualization allows users to review and communicate complex multi-step analyses, which can be based on hundreds of files that are processed by numerous workflows. We have integrated our approach into an analysis platform that captures extensive data provenance information, and demonstrate its effectiveness by means of a biomedical usage scenario.Item BlendForces: A Dynamic Framework for Facial Animation(The Eurographics Association and John Wiley & Sons Ltd., 2016) Barrielle, Vincent; Stoiber, Nicolas; Cagniart, Cédric; Joaquim Jorge and Ming LinIn this paper we present a new paradigm for the generation and retargeting of facial animation. Like a vast majority of the approaches that have adressed these topics, our formalism is built on blendshapes. However, where prior works have generally encoded facial geometry using a low dimensional basis of these blendshapes, we propose to encode facial dynamics by looking at blendshapes as a basis of forces rather than a basis of shapes. We develop this idea into a dynamic model that naturally combines the blendshapes paradigm with physics-based techniques for the simulation of deforming meshes. Because it escapes the linear span of the shape basis through time-integration and physics-inspired simulation, this approach has a wider expres- sive range than previous blendshape-based methods. Its inherent physically-based formulation also enables the simulation of more advanced physical interactions, such as collision responses on lip contacts.Item Boundary Detection in Particle-based Fluids(The Eurographics Association and John Wiley & Sons Ltd., 2016) Sandim, Marcos; Cedrim, Douglas; Nonato, Luis Gustavo; Pagliosa, Paulo; Paiva, Afonso; Joaquim Jorge and Ming LinThis paper presents a novel method to detect free-surfaces on particle-based volume representation. In contrast to most particlebased free-surface detection methods, which perform the surface identification based on physical and geometrical properties derived from the underlying fluid flow simulation, the proposed approach only demands the spatial location of the particles to properly recognize surface particles, avoiding even the use of kernels. Boundary particles are identified through a Hidden Point Removal (HPR) operator used for visibility test. Our method is very simple, fast, easy to implement and robust to changes in the distribution of particles, even when facing large deformation of the free-surface. A set of comparisons against state-of-the-art boundary detection methods show the effectiveness of our approach. The good performance of our method is also attested in the context of fluid flow simulation involving free-surface, mainly when using level-sets for rendering purposes.Item BubbleNet: A Cyber Security Dashboard for Visualizing Patterns(The Eurographics Association and John Wiley & Sons Ltd., 2016) McKenna, Sean; Staheli, Diane; Fulcher, Cody; Meyer, Miriah; Kwan-Liu Ma and Giuseppe Santucci and Jarke van WijkThe field of cyber security is faced with ever-expanding amounts of data and a constant barrage of cyber attacks. Within this space, we have designed BubbleNet as a cyber security dashboard to help network analysts identify and summarize patterns within the data. This design study faced a range of interesting constraints from limited time with various expert users and working with users beyond the network analyst, such as network managers. To overcome these constraints, the design study employed a user-centered design process and a variety of methods to incorporate user feedback throughout the design of BubbleNet. This approach resulted in a successfully evaluated dashboard with users and further deployments of these ideas in both research and operational environments. By explaining these methods and the process, it can benefit future visualization designers to help overcome similar challenges in cyber security or alternative domains.