VCBM 18: Eurographics Workshop on Visual Computing for Biology and Medicine
Permanent URI for this collection
Browse
Browsing VCBM 18: Eurographics Workshop on Visual Computing for Biology and Medicine by Subject "Applied computing"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Estimation of Muscle Activity in One-Leg Stance from 3D Surface Deformation(The Eurographics Association, 2018) Metzler, Johannes; Neumann, Thomas; Gassel, Stefanie; Friedrich, Jens; Wacker, Markus; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauMuscular activity during human motion is usually quantified by measuring the electrical potential during muscle activation using electromyography (EMG). However, apart from producing electrical activity, muscular contraction of many skeletal muscles also induces subtle deformation of the skin surface. In this paper, we present a method to estimate muscular activation from such 3D skin deformation. To this end, we introduce a capture system that reconstructs the 3D motion of the skin from multi-view video data and simultaneously measures true muscle activity with EMG sensors. Our data reveals strong correlations between the skin deformation and muscular activity during one-leg stances. We propose a pose normalization procedure and a novel model based on Supervised Principal Component Regression that automatically segments individual muscles and estimates their activation from 3D surface deformation. Our evaluation shows that the model generalizes to varying body shapes and that the estimated activation closely fits the measured EMG data.Item Global and Local Mesh Morphing for Complex Biological Objects from µCT Data(The Eurographics Association, 2018) Knötel, David; Becker, Carola; Scholtz, Gerhard; Baum, Daniel; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauWe show how biologically coherent mesh models of animals can be created from µCT data to generate artificial yet naturally looking intermediate objects. The whole pipeline of processing algorithms is presented, starting from generating topologically equivalent surface meshes, followed by solving the correspondence problem, and, finally, creating a surface morphing. In this pipeline, we address all the challenges that are due to dealing with complex biological, non-isometric objects. For biological objects it is often particularly important to obtain deformations that look as realistic as possible. In addition, spatially non-uniform shape morphings that only change one part of the surface and keep the rest as stable as possible are of interest for evolutionary studies, since functional modules often change independently from one another. We use Poisson interpolation for this purpose and show that it is well suited to generate both global and local shape deformations.Item ICG based Augmented-Reality-System for Sentinel Lymph Node Biopsy(The Eurographics Association, 2018) Noll, Matthias; Noa-Rudolph, Werner; Wesarg, Stefan; Kraly, Michael; Stoffels, Ingo; Klode, Joachim; Spass, Cédric; Spass, Gerrit; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauIn this paper we introduce a novel augmented-reality (AR) system for the sentinel lymph node (SLN) biopsy. The AR system consists of a cubic recording device with integrated stereo near-infrared (NIR) and stereo color cameras, an head mounted display (HMD) for visualizing the SLN information directly into the physicians view and a controlling software application. The labeling of the SLN is achieved using the fluorescent dye indocyanine green (ICG). The dye accumulates in the SLN where it is excited to fluorescence by applying infrared light. The fluorescence is recorded from two directions by the NIR stereo cameras using appropriate filters. Applying the known rigid camera geometry, an ICG depth map can be generated from the camera images, thus creating a live 3D representation of the SLN. The representation is then superimposed to the physicians field of view, by applying a series of coordinate system transformations, that are determined in four separate system calibration steps. To compensate for the head motion, the recording systems is continuously tracked by a single camera on the HMD using fiducial markers. Because the system does not require additional monitors, the physicians attention is kept solely on the operation site. This can potentially decrease the intervention time and render the procedure safer for the patient.Item A New Vessel Enhancement Transform on Retinal Blood Vessels Segmentation(The Eurographics Association, 2018) Soares, Ivo; Castelo-Branco, Miguel; Pinheiro, António M. G.; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauThe automatic detection of retinal blood vessels is a very important task in computer aided-diagnosis of retinal diseases. In this work a new method is proposed for the automated detection of the retinal vessels. Three new and important contributions are made. First, a new method capable of vessel enhancement is presented. Second, a new criterium to remove some false vessels caused by the proximity to bright regions is presented, avoiding the false vessels created by the presence of exudates or bright artifacts. Third, a new method that discards the false vessel regions that usually tends to appear in the border of the optic disc. This is achieved using the derivatives of the gradient magnitude local maxima over different scales. The performance evaluation is made on two publicly available databases, namely, STARE, and HRF with state-of-the-art results. Particularly, the described method reveals to be very reliable on retinal images with large pathological signs.Item Visual Analysis of Evolution of EEG Coherence Networks employing Temporal Multidimensional Scaling(The Eurographics Association, 2018) Ji, Chengtao; Maurits, Natasha M.; Roerdink, Jos B. T. M.; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauThe community structure of networks plays an important role in their analysis. It represents a high-level organization of objects within a network. However, in many application domains, the relationship between objects in a network changes over time, resulting in the change of community structure (the partition of a network), their attributes (the composition of a community and the values of relationships between communities), or both. Previous animation or timeline-based representations either visualize the change of attributes of networks or the community structure. There is no single method that can optimally show graphs that change in both structure and attributes. In this paper we propose a method for the case of dynamic EEG coherence networks to assist users in exploring the dynamic changes in both their community structure and their attributes. The method uses an initial timeline representation which was designed to provide an overview of changes in community structure. In addition, we order communities and assign colors to them based on their relationships by adapting the existing Temporal Multidimensional Scaling (TMDS) method. Users can identify evolution patterns of dynamic networks from this visualization.Item VisualFlatter - Visual Analysis of Distortions in the Projection of Biomedical Structures(The Eurographics Association, 2018) Grossmann, Nicolas; Köppel, Thomas; Gröller, Eduard; Raidou, Renata Georgia; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauProjections of complex anatomical or biological structures from 3D to 2D are often used by visualization and domain experts to facilitate inspection and understanding. Representing complex structures, such as organs or molecules, in a simpler 2D way often requires less interaction, while enabling comparability. However, the most commonly employed projection methods introduce size or shape distortions, in the resulting 2D representations. While simple projections display known distortion patterns, more complex projection algorithms are not easily predictable.We propose the VisualFlatter, a visual analysis tool that enables visualization and domain experts to explore and analyze projection-induced distortions, in a structured way. Our tool provides a way to identify projected regions with semantically relevant distortions and allows users to comparatively analyze distortion outcomes, either from alternative projection methods or due to different setups through the projection pipeline. The user is given the ability to improve the initial projection configuration, after comparing different setups. We demonstrate the functionality of our tool using four scenarios of 3D to 2D projections, conducted with the help of domain or visualization experts working on different application fields. We also performed a wider evaluation with 13 participants, familiar with projections, to assess the usability and functionality of the Visual Flatter.