Volume 40 (2021)
Permanent URI for this community
Browse
Browsing Volume 40 (2021) by Title
Now showing 1 - 20 of 231
Results Per Page
Sort Options
Item Accessible Visualization: Design Space, Opportunities, and Challenges(The Eurographics Association and John Wiley & Sons Ltd., 2021) Kim, Nam Wook; Joyner, Shakila Cherise; Riegelhuth, Amalia; Kim, Yea-Seul; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonVisualizations are now widely used across disciplines to understand and communicate data. The benefit of visualizations lies in leveraging our natural visual perception. However, the sole dependency on vision can produce unintended discrimination against people with visual impairments. While the visualization field has seen enormous growth in recent years, supporting people with disabilities is much less explored. In this work, we examine approaches to support this marginalized user group, focusing on visual disabilities. We collected and analyzed papers published for the last 20 years on visualization accessibility. We mapped a design space for accessible visualization that includes seven dimensions: user group, literacy task, chart type, interaction, information granularity, sensory modality, assistive technology. We described the current knowledge gap in light of the latest advances in visualization and presented a preliminary accessibility model by synthesizing findings from existing research. Finally, we reflected on the dimensions and discussed opportunities and challenges for future research.Item Action Unit Driven Facial Expression Synthesis from a Single Image with Patch Attentive GAN(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Zhao, Yong; Yang, Le; Pei, Ercheng; Oveneke, Meshia Cédric; Alioscha‐Perez, Mitchel; Li, Longfei; Jiang, Dongmei; Sahli, Hichem; Benes, Bedrich and Hauser, HelwigRecent advances in generative adversarial networks (GANs) have shown tremendous success for facial expression generation tasks. However, generating vivid and expressive facial expressions at Action Units (AUs) level is still challenging, due to the fact that automatic facial expression analysis for AU intensity itself is an unsolved difficult task. In this paper, we propose a novel synthesis‐by‐analysis approach by leveraging the power of GAN framework and state‐of‐the‐art AU detection model to achieve better results for AU‐driven facial expression generation. Specifically, we design a novel discriminator architecture by modifying the patch‐attentive AU detection network for AU intensity estimation and combine it with a global image encoder for adversarial learning to force the generator to produce more expressive and realistic facial images. We also introduce a balanced sampling approach to alleviate the imbalanced learning problem for AU synthesis. Extensive experimental results on DISFA and DISFA+ show that our approach outperforms the state‐of‐the‐art in terms of photo‐realism and expressiveness of the facial expression quantitatively and qualitatively.Item Adaptive Compositing and Navigation of Variable Resolution Images(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Licorish, C.; Faraj, N.; Summa, B.; Benes, Bedrich and Hauser, HelwigWe present a new, high‐quality compositing pipeline and navigation approach for variable resolution imagery. The motivation of this work is to explore the use of variable resolution images as a quick and accessible alternative to traditional gigapixel mosaics. Instead of the common tedious acquisition of many images using specialized hardware, variable resolution images can achieve similarly deep zooms as large mosaics, but with only a handful of images. For this approach to be a viable alternative, the state‐of‐the‐art in variable resolution compositing needs to be improved to match the high‐quality approaches commonly used in mosaic compositing. To this end, we provide a novel, variable resolution mosaic seam calculation and gradient domain color correction. This approach includes a new priority order graph cuts computation along with a practical data structure to keep memory overhead low. In addition, navigating variable resolution images is challenging, especially at the zoom factors targeted in this work. To address this challenge, we introduce a new image interaction for variable resolution imagery: a pan that automatically, and smoothly, hugs available resolution. Finally, we provide several real‐world examples of our approach producing high‐quality variable resolution mosaics with deep zooms typically associated with gigapixel photography.Item Adversarial Single-Image SVBRDF Estimation with Hybrid Training(The Eurographics Association and John Wiley & Sons Ltd., 2021) Zhou, Xilong; Kalantari, Nima Khademi; Mitra, Niloy and Viola, IvanIn this paper, we propose a deep learning approach for estimating the spatially-varying BRDFs (SVBRDF) from a single image. Most existing deep learning techniques use pixel-wise loss functions which limits the flexibility of the networks in handling this highly unconstrained problem. Moreover, since obtaining ground truth SVBRDF parameters is difficult, most methods typically train their networks on synthetic images and, therefore, do not effectively generalize to real examples. To avoid these limitations, we propose an adversarial framework to handle this application. Specifically, we estimate the material properties using an encoder-decoder convolutional neural network (CNN) and train it through a series of discriminators that distinguish the output of the network from ground truth. To address the gap in data distribution of synthetic and real images, we train our network on both synthetic and real examples. Specifically, we propose a strategy to train our network on pairs of real images of the same object with different lighting. We demonstrate that our approach is able to handle a variety of cases better than the state-of-the-art methods.Item An Analytic BRDF for Materials with Spherical Lambertian Scatterers(The Eurographics Association and John Wiley & Sons Ltd., 2021) d'Eon, Eugene; Bousseau, Adrien and McGuire, MorganWe present a new analytic BRDF for porous materials comprised of spherical Lambertian scatterers. The BRDF has a single parameter: the albedo of the Lambertian particles. The resulting appearance exhibits strong back scattering and saturation effects that height-field-based models such as Oren-Nayar cannot reproduce.Item Animated Presentation of Static Infographics with InfoMotion(The Eurographics Association and John Wiley & Sons Ltd., 2021) Wang, Yun; Gao, Yi; Huang, Ray; Cui, Weiwei; Zhang, Haidong; Zhang, Dongmei; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonBy displaying visual elements logically in temporal order, animated infographics can help readers better understand layers of information expressed in an infographic. While many techniques and tools target the quick generation of static infographics, few support animation designs. We propose InfoMotion that automatically generates animated presentations of static infographics. We first conduct a survey to explore the design space of animated infographics. Based on this survey, InfoMotion extracts graphical properties of an infographic to analyze the underlying information structures; then, animation effects are applied to the visual elements in the infographic in temporal order to present the infographic. The generated animations can be used in data videos or presentations. We demonstrate the utility of InfoMotion with two example applications, including mixed-initiative animation authoring and animation recommendation. To further understand the quality of the generated animations, we conduct a user study to gather subjective feedback on the animations generated by InfoMotion.Item Anisotropic Spectral Manifold Wavelet Descriptor(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Li, Qinsong; Hu, Ling; Liu, Shengjun; Yang, Dangfu; Liu, Xinru; Benes, Bedrich and Hauser, HelwigIn this paper, we present a powerful spectral shape descriptor for shape analysis, named Anisotropic Spectral Manifold Wavelet Descriptor (ASMWD). We proposed a novel manifold harmonic signal processing tool termed Anisotropic Spectral Manifold Wavelet Transform (ASMWT) first. ASMWT allows to comprehensively analyse signals from multiple wavelet diffusion directions on local manifold regions of the shape with a series of low‐pass and band‐pass frequency filters in each direction. Based on the ASMWT coefficients of a very simple signal, the ASMWD is efficiently constructed as a localizable and discriminative multi‐scale point descriptor. Since the wavelets used in our descriptor are direction‐sensitive and able to robustly reconstruct the signals with a finite number of scales, it makes our descriptor compact, efficient, and unambiguous under intrinsic symmetry. The extensive experiments demonstrate that our descriptor achieves significantly better performance than the state‐of‐the‐art descriptors and can greatly improve the performance of shape matching methods including both handcrafted and learning‐based methods.Item AutoClips: An Automatic Approach to Video Generation from Data Facts(The Eurographics Association and John Wiley & Sons Ltd., 2021) Shi, Danqing; Sun, Fuling; Xu, Xinyue; Lan, Xingyu; Gotz, David; Cao, Nan; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonData videos, a storytelling genre that visualizes data facts with motion graphics, are gaining increasing popularity among data journalists, non-profits, and marketers to communicate data to broad audiences. However, crafting a data video is often timeconsuming and asks for various domain knowledge such as data visualization, animation design, and screenwriting. Existing authoring tools usually enable users to edit and compose a set of templates manually, which still cost a lot of human effort. To further lower the barrier of creating data videos, this work introduces a new approach, AutoClips, which can automatically generate data videos given the input of a sequence of data facts. We built AutoClips through two stages. First, we constructed a fact-driven clip library where we mapped ten data facts to potential animated visualizations respectively by analyzing 230 online data videos and conducting interviews. Next, we constructed an algorithm that generates data videos from data facts through three steps: selecting and identifying the optimal clip for each of the data facts, arranging the clips into a coherent video, and optimizing the duration of the video. The results from two user studies indicated that the data videos generated by AutoClips are comprehensible, engaging, and have comparable quality with human-made videos.Item Automatic Image Checkpoint Selection for Guider‐Follower Pedestrian Navigation(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Kwan, K. C.; Fu, H.; Benes, Bedrich and Hauser, HelwigIn recent years guider‐follower approaches show a promising solution to the challenging problem of last‐mile or indoor pedestrian navigation without micro‐maps or indoor floor plans for path planning. However, the success of such guider‐follower approaches is highly dependent on a set of manually and carefully chosen image or video checkpoints. This selection process is tedious and error‐prone. To address this issue, we first conduct a pilot study to understand how users as guiders select critical checkpoints from a video recorded while walking along a route, leading to a set of criteria for automatic checkpoint selection. By using these criteria, including visibility, stairs and clearness, we then implement this automation process. The key behind our technique is a lightweight, effective algorithm using left‐hand‐side and right‐hand‐side objects for path occlusion detection, which benefits both automatic checkpoint selection and occlusion‐aware path annotation on selected image checkpoints. Our experimental results show that our automatic checkpoint selection method works well in different navigation scenarios. The quality of automatically selected checkpoints is comparable to that of manually selected ones and higher than that of checkpoints by alternative automatic methods.Item Automatic Improvement of Continuous Colormaps in Euclidean Colorspaces(The Eurographics Association and John Wiley & Sons Ltd., 2021) Nardini, Pascal; Chen, Min; Böttinger, Michael; Scheuermann, Gerik; Bujack, Roxana; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonColormapping is one of the simplest and most widely used data visualization methods within and outside the visualization community. Uniformity, order, discriminative power, and smoothness of continuous colormaps are the most important criteria for evaluating and potentially improving colormaps. We present a local and a global automatic optimization algorithm in Euclidean color spaces for each of these design rules in this work. As a foundation for our optimization algorithms, we used the CCC-Tool colormap specification (CMS); each algorithm has been implemented in this tool. In addition to synthetic examples that demonstrate each method's effect, we show the outcome of some of the methods applied to a typhoon simulation.Item Automatic Surface Segmentation for Seamless Fabrication Using 4-axis Milling Machines(The Eurographics Association and John Wiley & Sons Ltd., 2021) Nuvoli, Stefano; Tola, Alessandro; Muntoni, Alessandro; Pietroni, Nico; Gobbetti, Enrico; Scateni, Riccardo; Mitra, Niloy and Viola, IvanWe introduce a novel geometry-processing pipeline to guide the fabrication of complex shapes from a single block of material using 4-axis CNC milling machines. This setup extends classical 3-axis CNC machining with an extra degree of freedom to rotate the object around a fixed axis. The first step of our pipeline identifies the rotation axis that maximizes the overall fabrication accuracy. Then we identify two height-field regions at the rotation axis's extremes used to secure the block on the rotation tool. We segment the remaining portion of the mesh into a set of height-fields whose principal directions are orthogonal to the rotation axis. The segmentation balances the approximation quality, the boundary smoothness, and the total number of patches. Additionally, the segmentation process takes into account the object's geometric features, as well as saliency information. The output is a set of meshes ready to be processed by off-the-shelf software for the 3-axis tool-path generation. We present several results to demonstrate the quality and efficiency of our approach to a range of inputsItem A Benchmark Dataset for Repetitive Pattern Recognition on Textured 3D Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2021) Lengauer, Stefan; Sipiran, Ivan; Preiner, Reinhold; Schreck, Tobias; Bustos, Benjamin; Digne, Julie and Crane, KeenanIn digital archaeology, a large research area is concerned with the computer-aided analysis of 3D captured ancient pottery objects. A key aspect thereby is the analysis of motifs and patterns that were painted on these objects' surfaces. In particular, the automatic identification and segmentation of repetitive patterns is an important task serving different applications such as documentation, analysis and retrieval. Such patterns typically contain distinctive geometric features and often appear in repetitive ornaments or friezes, thus exhibiting a significant amount of symmetry and structure. At the same time, they can occur at varying sizes, orientations and irregular placements, posing a particular challenge for the detection of similarities. A key prerequisite to develop and evaluate new detection approaches for such repetitive patterns is the availability of an expressive dataset of 3D models, defining ground truth sets of similar patterns occurring on their surfaces. Unfortunately, such a dataset has not been available so far for this particular problem. We present an annotated dataset of 82 different 3D models of painted ancient Peruvian vessels, exhibiting different levels of repetitiveness in their surface patterns. To serve the evaluation of detection techniques of similar patterns, our dataset was labeled by archaeologists who identified clearly definable pattern classes. Those given, we manually annotated their respective occurrences on the mesh surfaces. Along with the data, we introduce an evaluation benchmark that can rank different recognition techniques for repetitive patterns based on the mean average precision of correctly segmented 3D mesh faces. An evaluation of different incremental sampling-based detection approaches, as well as a domain specific technique, demonstrates the applicability of our benchmark. With this benchmark we especially want to address the geometry processing community, and expect it will induce novel approaches for pattern analysis based on geometric reasoning like 2D shape and symmetry analysis. This can enable novel research approaches in the Digital Humanities and related fields, based on digitized 3D Cultural Heritage artifacts. Alongside the source code for our evaluation scripts we provide our annotation tools for the public to extend the benchmark and further increase its variety.Item Blending of Hyperbolic Closed Curves(The Eurographics Association and John Wiley & Sons Ltd., 2021) Ikemakhen, Aziz; Ahanchaou, Taoufik; Digne, Julie and Crane, KeenanIn recent years, game developers are interested in developing games in the hyperbolic space. Shape blending is one of the fundamental techniques to produce animation and videos games. This paper presents two algorithms for blending between two closed curves in the hyperbolic plane in a manner that guarantees that the intermediate curves are closed. We deal with hyperbolic discrete curves on Poincaré disc which is a famous model of the hyperbolic plane. We use the linear interpolation approach of the geometric invariants of hyperbolic polygons namely hyperbolic side lengths, exterior angles and geodesic discrete curvature. We formulate the closing condition of a hyperbolic polygon in terms of its geodesic side lengths and exterior angles. This is to be able to generate closed intermediate curves. Finally, some experimental results are given to illustrate that the proposed methods generate aesthetic blending of closed hyperbolic curves.Item Blue Noise Plots(The Eurographics Association and John Wiley & Sons Ltd., 2021) Onzenoodt, Christian van; Singh, Gurprit; Ropinski, Timo; Ritschel, Tobias; Mitra, Niloy and Viola, IvanWe propose Blue Noise Plots, two-dimensional dot plots that depict data points of univariate data sets. While often onedimensional strip plots are used to depict such data, one of their main problems is visual clutter which results from overlap. To reduce this overlap, jitter plots were introduced, whereby an additional, non-encoding plot dimension is introduced, along which the data point representing dots are randomly perturbed. Unfortunately, this randomness can suggest non-existent clusters, and often leads to visually unappealing plots, in which overlap might still occur. To overcome these shortcomings, we introduce Blue Noise Plots where random jitter along the non-encoding plot dimension is replaced by optimizing all dots to keep a minimum distance in 2D i. e., Blue Noise. We evaluate the effectiveness as well as the aesthetics of Blue Noise Plots through both, a quantitative and a qualitative user study. The Python implementation of Blue Noise Plots is available here.Item Boundary Objects in Design Studies: Reflections on the Collaborative Creation of Isochrone Maps(The Eurographics Association and John Wiley & Sons Ltd., 2021) Vuillemot, Romain; Rivière, Philippe; Beignon, Anaëlle; Tabard, Aurélien; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonWe propose to take an artifact-centric approach to design studies by leveraging the concept of boundary object. Design studies typically focus on processes and articulate design decisions in a project-specific context with a goal of transferability. We argue that design studies could benefit from paying attention to the material conditions in which teams collaborate to reach design outcomes. We report on a design study of isochrone maps following cartographic generalization principles. Focusing on boundary objects enables us to characterize five categories of artifacts and tools that facilitated collaboration between actors involved in the design process (structured collections, structuring artifacts, process-centric artifacts, generative artifacts, and bridging artifacts). We found that artifacts such as layered maps and map collections played a unifying role for our inter-disciplinary team. We discuss how such artifacts can be pivotal in the design process. Finally, we discuss how considering boundary objects could improve the transferability of design study results, and support reflection on inter-disciplinary collaboration in the domain of Information Visualization.Item BRDF Importance Sampling for Linear Lights(The Eurographics Association and John Wiley & Sons Ltd., 2021) Peters, Christoph; Binder, Nikolaus and Ritschel, TobiasWe introduce an efficient method to sample linear lights, i.e. infinitesimally thin cylinders, proportional to projected solid angle. Our method uses inverse function sampling with a specialized iterative procedure that converges to high accuracy in only two iterations. It also allows us to sample proportional to a linearly transformed cosine. By combining both sampling techniques through suitable multiple importance sampling heuristics and by using good stratification, we achieve unbiased diffuse and specular real-time shading with low variance outside penumbrae at two samples per pixel. Additionally, we provide a fast method for solid angle sampling.Item ClipFlip : Multi‐view Clipart Design(© 2021 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2021) Shen, I‐Chao; Liu, Kuan‐Hung; Su, Li‐Wen; Wu, Yu‐Ting; Chen, Bing‐Yu; Benes, Bedrich and Hauser, HelwigWe present an assistive system for clipart design by providing visual scaffolds from the unseen viewpoints. Inspired by the artists' creation process, our system constructs the visual scaffold by first synthesizing the reference 3D shape of the input clipart and rendering it from the desired viewpoint. The critical challenge of constructing this visual scaffold is to generate a reference 3D shape that matches the user's expectations in terms of object sizing and positioning while preserving the geometric style of the input clipart. To address this challenge, we propose a user‐assisted curve extrusion method to obtain the reference 3D shape. We render the synthesized reference 3D shape with a consistent style into the visual scaffold. By following the generated visual scaffold, the users can efficiently design clipart with their desired viewpoints. The user study conducted by an intuitive user interface and our generated visual scaffold suggests that our system is especially useful for estimating the ratio and scale between object parts and can save on average 57% of drawing time.Item ClusterSets: Optimizing Planar Clusters in Categorical Point Data(The Eurographics Association and John Wiley & Sons Ltd., 2021) Geiger, Jakob; Cornelsen, Sabine; Haunert, Jan-Henrik; Kindermann, Philipp; Mchedlidze, Tamara; Nöllenburg, Martin; Okamoto, Yoshio; Wolff, Alexander; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonIn geographic data analysis, one is often given point data of different categories (such as facilities of a university categorized by department). Drawing upon recent research on set visualization, we want to visualize category membership by connecting points of the same category with visual links. Existing approaches that follow this path usually insist on connecting all members of a category, which may lead to many crossings and visual clutter. We propose an approach that avoids crossings between connections of different categories completely. Instead of connecting all data points of the same category, we subdivide categories into smaller, local clusters where needed. We do a case study comparing the legibility of drawings produced by our approach and those by existing approaches. In our problem formulation, we are additionally given a graph G on the data points whose edges express some sort of proximity. Our aim is to find a subgraph G0 of G with the following properties: (i) edges connect only data points of the same category, (ii) no two edges cross, and (iii) the number of connected components (clusters) is minimized. We then visualize the clusters in G0. For arbitrary graphs, the resulting optimization problem, Cluster Minimization, is NP-hard (even to approximate). Therefore, we introduce two heuristics. We do an extensive benchmark test on real-world data. Comparisons with exact solutions indicate that our heuristics do astonishing well for certain relative-neighborhood graphs.Item Coherent Mark-based Stylization of 3D Scenes at the Compositing Stage(The Eurographics Association and John Wiley & Sons Ltd., 2021) Garcia, Maxime; Vergne, Romain; Farhat, Mohamed-Amine; Bénard, Pierre; Noûs, Camille; Thollot, Joëlle; Mitra, Niloy and Viola, IvanWe present a novel temporally coherent stylized rendering technique working entirely at the compositing stage. We first generate a distribution of 3D anchor points using an implicit grid based on the local object positions stored in a G-buffer, hence following object motion. We then draw splats in screen space anchored to these points so as to be motion coherent. To increase the perceived flatness of the style, we adjust the anchor points density using a fractalization mechanism. Sudden changes are prevented by controlling the anchor points opacity and introducing a new order-independent blending function. We demonstrate the versatility of our method by showing a large variety of styles thanks to the freedom offered by the splats content and their attributes that can be controlled by any G-buffer.Item Color Nameability Predicts Inference Accuracy in Spatial Visualizations(The Eurographics Association and John Wiley & Sons Ltd., 2021) Reda, Khairi; Salvi, Amey A.; Gray, Jack; Papka, Michael E.; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana vonColor encoding is foundational to visualizing quantitative data. Guidelines for colormap design have traditionally emphasized perceptual principles, such as order and uniformity. However, colors also evoke cognitive and linguistic associations whose role in data interpretation remains underexplored. We study how two linguistic factors, name salience and name variation, affect people's ability to draw inferences from spatial visualizations. In two experiments, we found that participants are better at interpreting visualizations when viewing colors with more salient names (e.g., prototypical 'blue', 'yellow', and 'red' over 'teal', 'beige', and 'maroon'). The effect was robust across four visualization types, but was more pronounced in continuous (e.g., smooth geographical maps) than in similar discrete representations (e.g., choropleths). Participants' accuracy also improved as the number of nameable colors increased, although the latter had a less robust effect. Our findings suggest that color nameability is an important design consideration for quantitative colormaps, and may even outweigh traditional perceptual metrics. In particular, we found that the linguistic associations of color are a better predictor of performance than the perceptual properties of those colors. We discuss the implications and outline research opportunities. The data and materials for this study are available at https://osf.io/asb7n