Volume 37 (2018)
Permanent URI for this community
Browse
Browsing Volume 37 (2018) by Title
Now showing 1 - 20 of 253
Results Per Page
Sort Options
Item 2018 Cover Image: Thingi10K(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Zhou, Qingnan; Jacobson, Alec; Chen, Min and Benes, BedrichItem Acquisition and Validation of Spectral Ground Truth Data for Predictive Rendering of Rough Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2018) Clausen, Olaf; Marroquim, Ricardo; Fuhrmann, Arnulph; Jakob, Wenzel and Hachisuka, ToshiyaPhysically based rendering uses principles of physics to model the interaction of light with matter. Even though it is possible to achieve photorealistic renderings, it often fails to be predictive. There are two major issues: first, there is no analytic material model that considers all appearance critical characteristics; second, light is in many cases described by only 3 RGB-samples. This leads to the problem that there are different models for different material types and that wavelength dependent phenomena are only approximated. In order to be able to analyze the influence of both problems on the appearance of real world materials, an accurate comparison between rendering and reality is necessary. Therefore, in this work, we acquired a set of precisely and spectrally resolved ground truth data. It consists of the precise description of a new developed reference scene including isotropic BRDFs of 24 color patches, as well as the reference measurements of all patches under 13 different angles inside the reference scene. Our reference data covers rough materials with many different spectral distributions and various illumination situations, from direct light to indirect light dominated situations.Item Analyzing Residue Surface Proximity to Interpret Molecular Dynamics(The Eurographics Association and John Wiley & Sons Ltd., 2018) Lichtenberg, Nils; Menges, Raphael; Ageev, Vladimir; George, Ajay Abisheck Paul; Heimer, Pascal; Imhof, Diana; Lawonn, Kai; Jeffrey Heer and Heike Leitte and Timo RopinskiThe surface of a molecule holds important information about the interaction behavior with other molecules. In dynamic folding or docking processes, residues of amino acids with different properties change their position within the molecule over time. The atoms of the residues that are accessible to the solvent can directly contribute to binding interactions, while residues buried within the molecular structure contribute to the stability of the molecule. Understanding patterns and causality of structural changes is important for experts in the pharmaceutical domain, e.g., in the process of drug design. We apply an iterative computation of the Solvent Accessible Surface in order to extract virtual layers of a molecule. The extraction allows to track the movement of residues in the body of the molecule, with respect to the distance of the residue to the surface or the core during dynamics simulations. We visualize the obtained layer information for the complete time span of the molecular dynamics simulation as a 2D-map and for individual time-steps as a 3D-representation of the molecule. The data acquisition has been implemented alongside with further analysis functionality in a prototypical application, which is available to the public domain. We underline the feasibility of our approach with a study from the pharmaceutical domain, where our approach has been used for novel insights into the folding behavior of μ-conotoxins.Item Application‐Specific Tone Mapping Via Genetic Programming(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Debattista, K.; Chen, Min and Benes, BedrichHigh dynamic range (HDR) imagery permits the manipulation of real‐world data distinct from the limitations of the traditional, low dynamic range (LDR), content. The process of retargeting HDR content to traditional LDR imagery via tone mapping operators (TMOs) is useful for visualizing HDR content on traditional displays, supporting backwards‐compatible HDR compression and, more recently, is being frequently used for input into a wide variety of computer vision applications. This work presents the automatic generation of TMOs for specific applications via the evolutionary computing method of genetic programming (GP). A straightforward, generic GP method that generates TMOs for a given fitness function and HDR content is presented. Its efficacy is demonstrated in the context of three applications: Visualization of HDR content on LDR displays, feature mapping and compression. For these applications, results show good performance for the generated TMOs when compared to traditional methods. Furthermore, they demonstrate that the method is generalizable and could be used across various applications that require TMOs but for which dedicated successful TMOs have not yet been discovered. High dynamic range (HDR) imagery permits the manipulation of real‐world data distinct from the limitations of the traditional, low dynamic range (LDR), content. The process of retargeting HDR content to traditional LDR imagery via tone mapping operators (TMOs) is useful for visualizing HDR content on traditional displays, supporting backwards‐compatible HDR compression and, more recently, is being frequently used for input into a wide variety of computer vision applications. This work presents the automatic generation of TMOs for specific applications via the evolutionary computing method of genetic programming (GP).Item An Approximate Parallel Vectors Operator for Multiple Vector Fields(The Eurographics Association and John Wiley & Sons Ltd., 2018) Gerrits, Tim; Rössl, Christian; Theisel, Holger; Jeffrey Heer and Heike Leitte and Timo RopinskiThe Parallel Vectors (PV) Operator extracts the locations of points where two vector fields are parallel. In general, these features are line structures. The PV operator has been used successfully for a variety of problems, which include finding vortex-core lines or extremum lines. We present a new generic feature extraction method for multiple 3D vector fields: The Approximate Parallel Vectors (APV) Operator extracts lines where all fields are approximately parallel. The definition of the APV operator is based on the application of PV for two vector fields that are derived from the given set of fields. The APV operator enables the direct visualization of features of vector field ensembles without processing fields individually and without causing visual clutter. We give a theoretical analysis of the APV operator and demonstrate its utility for a number of ensemble data.Item Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting(The Eurographics Association and John Wiley & Sons Ltd., 2018) Yang, Yuting; Barnes, Connelly; Gutierrez, Diego and Sheffer, AllaWe introduce a general method to approximate the convolution of a program with a Gaussian kernel. This results in the program being smoothed. Our compiler framework models intermediate values in the program as random variables, by using mean and variance statistics. We decompose the input program into atomic parts and relate the statistics of the different parts of the smoothed program. We give several approximate smoothing rules that can be used for the parts of the program. These include an improved variant of Dorn et al. [DBLW15], a novel adaptive Gaussian approximation, Monte Carlo sampling, and compactly supported kernels. Our adaptive Gaussian approximation handles multivariate Gaussian distributed inputs, gives exact results for a larger class of programs than previous work, and is accurate to the second order in the standard deviation of the kernel for programs with certain analytic properties. Because each expression in the program can have multiple approximation choices, we use a genetic search to automatically select the best approximations. We apply this framework to the problem of automatically bandlimiting procedural shader programs. We evaluate our method on a variety of geometries and complex shaders, including shaders with parallax mapping, animation, and spatially varying statistics. The resulting smoothed shader programs outperform previous approaches both numerically and aesthetically.Item ARAPLBS: Robust and Efficient Elasticity‐Based Optimization of Weights and Skeleton Joints for Linear Blend Skinning with Parametrized Bones(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Thiery, J.‐M.; Eisemann, E.; Chen, Min and Benes, BedrichWe present a fast, robust and high‐quality technique to skin a mesh with reference to a skeleton. We consider the space of possible skeleton deformations (based on skeletal constraints, or skeletal animations), and compute skinning weights based on an optimization scheme to obtain as‐rigid‐as‐possible (ARAP) corresponding mesh deformations. We support stretchable‐and‐twistable bones (STBs) and spines by generalizing the ARAP deformations to stretchable deformers. In addition, our approach can optimize joint placements. If wanted, a user can guide and interact with the results, which is facilitated by an interactive feedback, reached via an efficient sparsification scheme. We demonstrate our technique on challenging inputs (STBs and spines, triangle and tetrahedral meshes featuring missing elements, boundaries, self‐intersections or wire edges).We present a fast, robust and high‐quality technique to skin a mesh with reference to a skeleton. We consider the space of possible skeleton deformations (based on skeletal constraints, or skeletal animations), and compute skinning weights based on an optimization scheme to obtain as‐rigid‐as‐possible (ARAP) corresponding mesh deformations. We support stretchable‐and‐twistable bones (STBs) and spines by generalizing the ARAP deformations to stretchable deformers. In addition, our approach can optimize joint placements. If wanted, a user can guide and interact with the results, which is facilitated by an interactive feedback, reached via an efficient sparsification scheme. We demonstrate our technique on challenging inputs (STBs and spines, triangle and tetrahedral meshes featuring missing elements, boundaries, self‐intersections or wire edges).Item Assessing Effects of Task and Data Distribution on the Effectiveness of Visual Encodings(The Eurographics Association and John Wiley & Sons Ltd., 2018) Kim, Younghoon; Heer, Jeffrey; Jeffrey Heer and Heike Leitte and Timo RopinskiIn addition to the choice of visual encodings, the effectiveness of a data visualization may vary with the analytical task being performed and the distribution of data values. To better assess these effects and create refined rankings of visual encodings, we conduct an experiment measuring subject performance across task types (e.g., comparing individual versus aggregate values) and data distributions (e.g., with varied cardinalities and entropies).We compare performance across 12 encoding specifications of trivariate data involving 1 categorical and 2 quantitative fields, including the use of x, y, color, size, and spatial subdivision (i.e., faceting). Our results extend existing models of encoding effectiveness and suggest improved approaches for automated design. For example, we find that colored scatterplots (with positionally-coded quantities and color-coded categories) perform well for comparing individual points, but perform poorly for summary tasks as the number of categories increases.Item Audiovisual Resource Allocation for Bimodal Virtual Environments(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Doukakis, E.; Debattista, K.; Harvey, C.; Bashford‐Rogers, T.; Chalmers, A.; Chen, Min and Benes, BedrichFidelity is of key importance if virtual environments are to be used as authentic representations of real environments. However, simulating the multitude of senses that comprise the human sensory system is computationally challenging. With limited computational resources, it is essential to distribute these carefully in order to simulate the most ideal perceptual experience. This paper investigates this balance of resources across multiple scenarios where combined audiovisual stimulation is delivered to the user. A subjective experiment was undertaken where participants (N=35) allocated five fixed resource budgets across graphics and acoustic stimuli. In the experiment, increasing the quality of one of the stimuli decreased the quality of the other. Findings demonstrate that participants allocate more resources to graphics; however, as the computational budget is increased, an approximately balanced distribution of resources is preferred between graphics and acoustics. Based on the results, an audiovisual quality prediction model is proposed and successfully validated against previously untested budgets and an untested scenario.Fidelity is of key importance if virtual environments are to be used as authentic representations of real environments. However, simulating the multitude of senses that comprise the human sensory system is computationally challenging. With limited computational resources, it is essential to distribute these carefully in order to simulate the most ideal perceptual experience. This paper investigates this balance of resources across multiple scenarios where combined audiovisual stimulation is delivered to the user. A subjective experiment was undertaken where participants (N=35) allocated five fixed resource budgets across graphics and acoustic stimuli.Item Aura Mesh: Motion Retargeting to Preserve the Spatial Relationships between Skinned Characters(The Eurographics Association and John Wiley & Sons Ltd., 2018) Jin, Taeil; Kim, Meekyoung; Lee, Sung-Hee; Gutierrez, Diego and Sheffer, AllaApplying motion-capture data to multi-person interaction between virtual characters is challenging because one needs to preserve the interaction semantics while also satisfying the general requirements of motion retargeting, such as preventing penetration and preserving naturalness. An efficient means of representing interaction semantics is by defining the spatial relationships between the body parts of characters. However, existing methods consider only the character skeleton and thus are not suitable for capturing skin-level spatial relationships. This paper proposes a novel method for retargeting interaction motions with respect to character skins. Specifically, we introduce the aura mesh, which is a volumetric mesh that surrounds a character's skin. The spatial relationships between two characters are computed from the overlap of the skin mesh of one character and the aura mesh of the other, and then the interaction motion retargeting is achieved by preserving the spatial relationships as much as possible while satisfying other constraints. We show the effectiveness of our method through a number of experiments.Item Automatic Mechanism Modeling from a Single Image with CNNs(The Eurographics Association and John Wiley & Sons Ltd., 2018) Lin, Minmin; Shao, Tianjia; Zheng, Youyi; Ren, Zhong; Weng, Yanlin; Yang, Yin; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesThis paper presents a novel system that enables a fully automatic modeling of both 3D geometry and functionality of a mechanism assembly from a single RGB image. The resulting 3D mechanism model highly resembles the one in the input image with the geometry, mechanical attributes, connectivity, and functionality of all the mechanical parts prescribed in a physically valid way. This challenging task is realized by combining various deep convolutional neural networks to provide high-quality and automatic part detection, segmentation, camera pose estimation and mechanical attributes retrieval for each individual part component. On the top of this, we use a local/global optimization algorithm to establish geometric interdependencies among all the parts while retaining their desired spatial arrangement. We use an interaction graph to abstract the inter-part connection in the resulting mechanism system. If an isolated component is identified in the graph, our system enumerates all the possible solutions to restore the graph connectivity, and outputs the one with the smallest residual error. We have extensively tested our system with a wide range of classic mechanism photos, and experimental results show that the proposed system is able to build high-quality 3D mechanism models without user guidance.Item Baseball Timeline: Summarizing Baseball Plays Into a Static Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2018) Ono, Jorge H. Piazentin; Dietrich, Carlos; Silva, Claudio T.; Jeffrey Heer and Heike Leitte and Timo RopinskiIn sports, Play Diagrams are the standard way to represent and convey information. They are widely used by coaches, managers, journalists and fans in general. There are situations where diagrams may be hard to understand, for example, when several actions are packed in a certain region of the field or there are just too many actions to be transformed in a clear depiction of the play. The representation of how actions develop through time, in particular, may be hardly achieved on such diagrams. The time, and the relationship among the actions of the players through time, is critical on the depiction of complex plays. In this context, we present a study on how player actions may be clearly depicted on 2D diagrams. The study is focused on Baseball plays, a sport where diagrams are heavily used to summarize the actions of the players. We propose a new and simple approach to represent spatiotemporal information in the form of a timeline. We designed our visualization with a requirement driven approach, conducting interviews and fulfilling the needs of baseball experts and expert-fans. We validate our approach by presenting a detailed analysis of baseball plays and conducting interviews with four domain experts.Item Bidirectional Rendering of Vector Light Transport(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Jarabo, Adrian; Arellano, Victor; Chen, Min and Benes, BedrichOn the foundations of many rendering algorithms it is the symmetry between the path traversed by light and its adjoint path starting from the camera. However, several effects, including polarization or fluorescence, break that symmetry, and are defined only on the direction of light propagation. This reduces the applicability of bidirectional methods that exploit this symmetry for simulating effectively light transport. In this work, we focus on how to include these non‐symmetric effects within a bidirectional rendering algorithm. We generalize the path integral to support the constraints imposed by non‐symmetric light transport. Based on this theoretical framework, we propose modifications on two bidirectional methods, namely bidirectional path tracing and photon mapping, extending them to support polarization and fluorescence, in both steady and transient state. On the foundations of many rendering algorithms, it is the symmetry between the path traversed by light and its adjoint path starting from the camera. However, several effects, including polarization or fluorescence, break that symmetry, and are defined only on the direction of light. This reduces the applicability of bidirectional methods that exploit this symmetry for simulating effectively light transport. In this work, we focus on how to include these non‐symmetric effects within a bidirectional rendering algorithm.Item Binocular Tone Mapping with Improved Overall Contrast and Local Details(The Eurographics Association and John Wiley & Sons Ltd., 2018) Zhang, Zhuming; Hu, Xinghong; Liu, Xueting; Wong, Tien-Tsin; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesTone mapping is a commonly used technique that maps the set of colors in high-dynamic-range (HDR) images to another set of colors in low-dynamic-range (LDR) images, to fit the need for print-outs, LCD monitors and projectors. Unfortunately, during the compression of dynamic range, the overall contrast and local details generally cannot be preserved simultaneously. Recently, with the increased use of stereoscopic devices, the notion of binocular tone mapping has been proposed in the existing research study. However, the existing research lacks the binocular perception study and is unable to generate the optimal binocular pair that presents the most visual content. In this paper, we propose a novel perception-based binocular tone mapping method, that can generate an optimal binocular image pair (generating left and right images simultaneously) from an HDR image that presents the most visual content by designing a binocular perception metric. Our method outperforms the existing method in terms of both visual and time performance.Item Biorthogonal Wavelet Surface Reconstruction Using Partial Integrations(The Eurographics Association and John Wiley & Sons Ltd., 2018) Ren, Xiaohua; Lyu, Luan; He, Xiaowei; Cao, Wei; Yang, Zhixin; Sheng, Bin; Zhang, Yanci; Wu, Enhua; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesWe introduce a new biorthogonal wavelet approach to creating a water-tight surface defined by an implicit function, from a finite set of oriented points. Our approach aims at addressing problems with previous wavelet methods which are not resilient to missing or nonuniformly sampled data. To address the problems, our approach has two key elements. First, by applying a three-dimensional partial integration, we derive a new integral formula to compute the wavelet coefficients without requiring the implicit function to be an indicator function. It can be shown that the previously used formula is a special case of our formula when the integrated function is an indicator function. Second, a simple yet general method is proposed to construct smooth wavelets with small support. With our method, a family of wavelets can be constructed with the same support size as previously used wavelets while having one more degree of continuity. Experiments show that our approach can robustly produce results comparable to those produced by the Fourier and Poisson methods, regardless of the input data being noisy, missing or nonuniform. Moreover, our approach does not need to compute global integrals or solve large linear systems.Item Bladder Runner: Visual Analytics for the Exploration of RT-Induced Bladder Toxicity in a Cohort Study(The Eurographics Association and John Wiley & Sons Ltd., 2018) Raidou, Renata Georgia; Casares-Magaz, Oscar; Amirkhanov, Aleksandr; Moiseenko, Vitali; Muren, Ludvig P.; Einck, John P.; Vilanova, Anna; Gröller, Eduard; Jeffrey Heer and Heike Leitte and Timo RopinskiWe present the Bladder Runner, a novel tool to enable detailed visual exploration and analysis of the impact of bladder shape variation on the accuracy of dose delivery, during the course of prostate cancer radiotherapy (RT). Our tool enables the investigation of individual patients and cohorts through the entire treatment process, and it can give indications of RT-induced complications for the patient. In prostate cancer RT treatment, despite the design of an initial plan prior to dose administration, bladder toxicity remains very common. The main reason is that the dose is delivered in multiple fractions over a period of weeks, during which, the anatomical variation of the bladder - due to differences in urinary filling - causes deviations between planned and delivered doses. Clinical researchers want to correlate bladder shape variations to dose deviations and toxicity risk through cohort studies, to understand which specific bladder shape characteristics are more prone to side effects. This is currently done with Dose-Volume Histograms (DVHs), which provide limited, qualitative insight. The effect of bladder variation on dose delivery and the resulting toxicity cannot be currently examined with the DVHs. To address this need, we designed and implemented the Bladder Runner, which incorporates visualization strategies in a highly interactive environment with multiple linked views. Individual patients can be explored and analyzed through the entire treatment period, while inter-patient and temporal exploration, analysis and comparison are also supported. We demonstrate the applicability of our presented tool with a usage scenario, employing a dataset of 29 patients followed through the course of the treatment, across 13 time points. We conducted an evaluation with three clinical researchers working on the investigation of RT-induced bladder toxicity. All participants agreed that Bladder Runner provides better understanding and new opportunities for the exploration and analysis of the involved cohort data.Item Cable Joints(The Eurographics Association and John Wiley & Sons Ltd., 2018) Müller, Matthias; Chentanez, Nuttapong; Jeschke, Stefan; Macklin, Miles; Thuerey, Nils and Beeler, ThaboRobustly and efficiently simulating cables and ropes that are part of a larger system such as cable driven machines, cable cars or tendons in a human or robot is a challenging task. To be able to adapt to the environment, cables are typically modeled as a large number of small segments that are connected via joints. The two main difficulties with this approach are to satisfy the inextensibility constraint and to handle the typically large mass ratio between the small segments and the larger objects they connect. In this paper we present a new approach which solves these problems in a simple and effective way. Our method is based on the idea to simulate the effect of the cables instead of the cables themselves. To this end we propose a new special type of distance constraint we call cable joint that changes both its attachment points and its rest length dynamically. A cable connecting a series of objects is then modeled as a sequence of cable joints which reduces the complexity of the simulation from the order of the number of segments to just the number of connected objects. This makes simulations both faster and more robust as we will demonstrate on a variety of examples.Item CFGExplorer: Designing a Visual Control Flow Analytics System around Basic Program Analysis Operations(The Eurographics Association and John Wiley & Sons Ltd., 2018) Devkota, Sabin; Isaacs, Katherine E.; Jeffrey Heer and Heike Leitte and Timo RopinskiTo develop new compilation and optimization techniques, computer scientists frequently consult program analysis artifacts such as control flow graphs (CFGs) and traces of executed instructions. A CFG is a directed graph representing possible execution paths in a program. CFGs are commonly visualized as node-link diagrams while traces are commonly viewed in raw text format. Visualizing and exploring CFGs and traces is challenging because of the complexity and specificity of the operations researchers perform. We present a design study where we collaborate with computer scientists researching dynamic binary analysis and compilation techniques. The research group primarily employs CFGs and traces to reason about and develop new algorithms for program optimization and parallelization. Through questionnaires, interviews, and a year-long observation, we analyzed their use of visualization, noting that the tasks they perform match common subroutines they employ in their techniques. Based on this task analysis, we designed CFGExplorer, a visual analytics system that supports computer scientists with interactions that are integrated with the program structure. We developed a domain-specific graph modification to generate graph layouts that reflect program structure. CFGExplorer incorporates structures such as functions and loops, and uses the correspondence between CFGs and traces to support navigation. We further augment the system to highlight the output of program analysis techniques, facilitating exploration at a higher level. We evaluate the tool through guided sessions and semi-structured interviews as well as deployment. Our collaborators have integrated CFGExplorer into their workflow and use it to reason about programs, develop and debug new algorithms, and share their findings.Item ChangeCatcher: Increasing Inter-author Awareness for Visualization Development(The Eurographics Association and John Wiley & Sons Ltd., 2018) Loorak, Mona Hosseinkhani; Tory, Melanie; Carpendale, Sheelagh; Jeffrey Heer and Heike Leitte and Timo RopinskiWe introduce an approach for explicitly revealing changes between versions of a visualization workbook to support version comparison tasks. Visualization authors may need to understand version changes for a variety of reasons, analogous to document editing. An author who has been away for a while may need to catch up on the changes made by their co-author, or a person responsible for formatting compliance may need to check formatting changes that occurred since the last time they reviewed the work. We introduce ChangeCatcher, a prototype tool to help people find and understand changes in a visualization workbook, specifically, a Tableau workbook. Our design is based on interviews we conducted with experts to investigate user needs and practices around version comparison. ChangeCatcher provides an overview of changes across six categories, and employs a multi-level details-on-demand approach to progressively reveal details. Our qualitative study showed that ChangeCatcher's methods for explicitly revealing and categorizing version changes were helpful in version comparison tasks.Item Chart Constellations: Effective Chart Summarization for Collaborative and Multi-User Analyses(The Eurographics Association and John Wiley & Sons Ltd., 2018) Xu, Shenyu; Bryan, Chris; Li, Jianping Kelvin; Zhao, Jian; Ma, Kwan-Liu; Jeffrey Heer and Heike Leitte and Timo RopinskiMany data problems in the real world are complex and require multiple analysts working together to uncover embedded insights by creating chart-driven data stories. How, as a subsequent analysis step, do we interpret and learn from these collections of charts? We present Chart Constellations, a system to interactively support a single analyst in the review and analysis of data stories created by other collaborative analysts. Instead of iterating through the individual charts for each data story, the analyst can project, cluster, filter, and connect results from all users in a meta-visualization approach. Constellations supports deriving summary insights about prior investigations and supports the exploration of new, unexplored regions in the dataset. To evaluate our system, we conduct a user study comparing it against data science notebooks. Results suggest that Constellations promotes the discovery of both broad and high-level insights, including theme and trend analysis, subjective evaluation, and hypothesis generation.