Volume 34 (2015)
Permanent URI for this community
Browse
Browsing Volume 34 (2015) by Title
Now showing 1 - 20 of 244
Results Per Page
Sort Options
Item 3D Fabrication of 2D Mechanisms(The Eurographics Association and John Wiley & Sons Ltd., 2015) Hergel, Jean; Lefebvre, Sylvain; Olga Sorkine-Hornung and Michael WimmerThe success of physics sandbox applications and physics-based puzzle games is a strong indication that casual users and hobbyists enjoy designing mechanisms, for educational or entertainment purposes. In these applications, a variety of mechanisms are designed by assembling two-dimensional shapes, creating gears, cranks, cams, and racks. The experience is made enjoyable by the fact that the user does not need to worry about the intricate geometric details that would be necessary to produce a real mechanism. In this paper, we propose to start from such casual designs of mechanisms and turn them into a 3D model that can be printed onto widely available, inexpensive filament based 3D printers. Our intent is to empower the users of such tools with the ability to physically realize their mechanisms and see them operate in the real world. To achieve this goal we tackle several challenges. The input 2D mechanism allows for some parts to overlap during simulation. These overlapping parts have to be resolved into non-intersecting 3D parts in the real mechanism. We introduce a novel scheme based on the idea of including moving parts into one another whenever possible. This reduces bending stresses on axles compared to previous methods. Our approach supports sliding parts and arbitrarily shaped mechanical parts in the 2D input. The exact 3D shape of the parts is inferred from the 2D input and the simulation of the mechanism, using boolean operations between shapes. The input mechanism is often simply attached to the background. We automatically synthesize a chassis by formulating a topology optimization problem, taking into account the stresses exerted by the mechanism on the chassis through time.Item 4D Model Flow: Precomputed Appearance Alignment for Real-time 4D Video Interpolation(The Eurographics Association and John Wiley & Sons Ltd., 2015) Casas, Dan; Richardt, Christian; Collomosse, John; Theobalt, Christian; Hilton, Adrian; Stam, Jos and Mitra, Niloy J. and Xu, KunWe introduce the concept of 4D model flow for the precomputed alignment of dynamic surface appearance across 4D video sequences of different motions reconstructed from multi-view video. Precomputed 4D model flow allows the efficient parametrization of surface appearance from the captured videos, which enables efficient real-time rendering of interpolated 4D video sequences whilst accurately reproducing visual dynamics, even when using a coarse underlying geometry. We estimate the 4D model flow using an image-based approach that is guided by available geometry proxies. We propose a novel representation in surface texture space for efficient storage and online parametric interpolation of dynamic appearance. Our 4D model flow overcomes previous requirements for computationally expensive online optical flow computation for data-driven alignment of dynamic surface appearance by precomputing the appearance alignment. This leads to an efficient rendering technique that enables the online interpolation between 4D videos in real time, from arbitrary viewpoints and with visual quality comparable to the state of the art.Item Accurate Computation of Single Scattering in Participating Media with Refractive Boundaries(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Holzschuch, N.; Deussen, Oliver and Zhang, Hao (Richard)Volume caustics are high‐frequency effects appearing in participating media with low opacity, when refractive interfaces are focusing the light rays. Refractions make them hard to compute, since screen locality does not correlate with spatial locality in the medium. In this paper, we give a new method for accurate computation of single scattering effects in a participating media enclosed by refractive interfaces. Our algorithm is based on the observation that although radiance along each camera ray is irregular, contributions from individual triangles are smooth. Our method gives more accurate results than existing methods, faster. It uses minimal information and requires no pre‐computation or additional data structures.Volume caustics are high‐frequency effects appearing in participating media with low opacity, when refractive interfaces are focusing the light rays. Refractions make them hard to compute, since screen locality does not correlate with spatial locality in the medium. In this paper, we give a new method for accurate computation of single scattering effects in a participating media enclosed by refractive interfaces. Our algorithm is based on the observation that although radiance along each camera ray is irregular, contributions from individual triangles are smooth. Our method gives more accurate results than existing methods, faster. It uses minimal information and requires no pre‐computation or additional data structures.Item Adaptable Anatomical Models for Realistic Bone Motion Reconstruction(The Eurographics Association and John Wiley & Sons Ltd., 2015) Zhu, Lifeng; Hu, Xiaoyan; Kavan, Ladislav; Olga Sorkine-Hornung and Michael WimmerWe present a system to reconstruct subject-specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin remain well-articulated after the adaptation.We propose an optimization algorithm which learns the subject-specific (anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting personalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically-based inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than previous methods such as OpenSIM or Anatomy Transfer.Item Adaptive Recommendations for Enhanced Non-linear Exploration of Annotated 3D Objects(The Eurographics Association and John Wiley & Sons Ltd., 2015) Rodriguez, Marcos Balsa; Agus, Marco; Marton, Fabio; Gobbetti, Enrico; H. Carr, K.-L. Ma, and G. SantucciWe introduce a novel approach for letting casual viewers explore detailed 3D models integrated with structured spatially associated descriptive information organized in a graph. Each node associates a subset of the 3D surface seen from a particular viewpoint to the related descriptive annotation, together with its author-defined importance. Graph edges describe, instead, the strength of the dependency relation between information nodes, allowing content authors to describe the preferred order of presentation of information. At run-time, users navigate inside the 3D scene using a camera controller, while adaptively receiving unobtrusive guidance towards interesting viewpoints and history- and location-dependent suggestions on important information, which is adaptively presented using 2D overlays displayed over the 3D scene. The capabilities of our approach are demonstrated in a real-world cultural heritage application involving the public presentation of sculptural complex on a large projection-based display. A user study has been performed in order to validate our approach.Item Advances in Interaction with 3D Environments(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Jankowski, J.; Hachet, M.; Deussen, Oliver and Zhang, Hao (Richard)Various interaction techniques have been developed for interactive 3D environments. This paper presents an up‐to‐date and comprehensive review of the state of the art of non‐immersive interaction techniques for , , and , including a basic introduction to the topic, the challenges and an examination of a number of popular approaches. We also introduce 3D Interaction Testbed (3DIT) to firstly allow a ‘' understanding of 3D interaction principles, and secondly to create an open platform for defining evaluation methods, stimuli as well as representative tasks akin to those found in other disciplines of science. We hope that this survey can aid both researchers and developers of interactive 3D applications in having a clearer overview of the topic and in particular can be useful for practitioners and researchers that are new to the field of interactive 3D graphics.Various interaction techniques have been developed for interactive 3D environments. This paper presents an up‐to‐date and comprehensive review of the state of the art of non‐immersive interaction techniques for , , and , including a basic introduction to the topic, the challenges and an examination of a number of popular approaches. We also introduce 3D Interaction Testbed (3DIT) to firstly allow a ‘' understanding of 3D interaction principles, and secondly to create an open platform for defining evaluation methods, stimuli as well as representative tasks akin to those found in other disciplines of science.Item Analysis and Synthesis of 3D Shape Families via Deep-learned Generative Models of Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2015) Huang, Haibin; Kalogerakis, Evangelos; Marlin, Benjamin; Mirela Ben-Chen and Ligang LiuWe present a method for joint analysis and synthesis of geometrically diverse 3D shape families. Our method first learns part-based templates such that an optimal set of fuzzy point and part correspondences is computed between the shapes of an input collection based on a probabilistic deformation model. In contrast to previous template-based approaches, the geometry and deformation parameters of our part-based templates are learned from scratch. Based on the estimated shape correspondence, our method also learns a probabilistic generative model that hierarchically captures statistical relationships of corresponding surface point positions and parts as well as their existence in the input shapes. A deep learning procedure is used to capture these hierarchical relationships. The resulting generative model is used to produce control point arrangements that drive shape synthesis by combining and deforming parts from the input collection. The generative model also yields compact shape descriptors that are used to perform fine-grained classification. Finally, it can be also coupled with the probabilistic deformation model to further improve shape correspondence. We provide qualitative and quantitative evaluations of our method for shape correspondence, segmentation, fine-grained classification and synthesis. Our experiments demonstrate superior correspondence and segmentation results than previous state-of-the-art approaches.Item AppFusion: Interactive Appearance Acquisition Using a Kinect Sensor(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Wu, Hongzhi; Zhou, Kun; Deussen, Oliver and Zhang, Hao (Richard)We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐shelf components: a Kinect sensor, a mirror ball and printed markers. We exploit the Kinect infra‐red emitter/receiver, originally designed for depth computation, as an active hand‐held reflectometer, to segment the object into clusters of similar specular materials and estimate the roughness parameters of BRDFs simultaneously. Next, the diffuse albedo and specular intensity of the spatially varying materials are rapidly computed in an inverse rendering framework, using data from the Kinect RGB camera. We demonstrate captured results of a range of materials, and physically validate our system.We present an interactive material acquisition system for average users to capture the spatially varying appearance of daily objects. While an object is being scanned, our system estimates its appearance on‐the‐fly and provides quick visual feedback. We build the system entirely on low‐end, off‐the‐shelf components: a Kinect sensor, a mirror ball and printed markers. We exploit the Kinect infra‐red emitter/receiver, originally designed for depth computation, as an active hand‐held reflectometer, to segment the object into clusters of similar specular materials and estimate the roughness parameters of BRDFs simultaneously.Item Approximating Free-form Geometry with Height Fields for Manufacturing(The Eurographics Association and John Wiley & Sons Ltd., 2015) Herholz, Philipp; Matusik, Wojciech; Alexa, Marc; Olga Sorkine-Hornung and Michael WimmerWe consider the problem of manufacturing free-form geometry with classical manufacturing techniques, such as mold casting or 3-axis milling. We determine a set of constraints that are necessary for manufacturability and then decompose and, if necessary, deform the shape to satisfy the constraints per segment. We show that many objects can be generated from a small number of (mold-)pieces if slight deformations are acceptable. We provide examples of actual molds and the resulting manufactured objects.Item Approximating the Generalized Voronoi Diagram of Closely Spaced Objects(The Eurographics Association and John Wiley & Sons Ltd., 2015) Edwards, John; Daniel, Eric; Pascucci, Valerio; Bajaj, Chandrajit; Olga Sorkine-Hornung and Michael WimmerWe present an algorithm to compute an approximation of the generalized Voronoi diagram (GVD) on arbitrary collections of 2D or 3D geometric objects. In particular, we focus on datasets with closely spaced objects; GVD approximation is expensive and sometimes intractable on these datasets using previous algorithms. With our approach, the GVD can be computed using commodity hardware even on datasets with many, extremely tightly packed objects. Our approach is to subdivide the space with an octree that is represented with an adjacency structure. We then use a novel adaptive distance transform to compute the distance function on octree vertices. The computed distance field is sampled more densely in areas of close object spacing, enabling robust and parallelizable GVD surface generation. We demonstrate our method on a variety of data and show example applications of the GVD in 2D and 3D.Item Biologically-Inspired Visual Simulation of Insect Swarms(The Eurographics Association and John Wiley & Sons Ltd., 2015) Li, Weizi; Wolinski, David; Pettré, Julien; Lin, Ming C.; Olga Sorkine-Hornung and Michael WimmerRepresenting the majority of living animals, insects are the most ubiquitous biological organisms on Earth. Being able to simulate insect swarms could enhance visual realism of various graphical applications. However, the very complex nature of insect behaviors makes its simulation a challenging computational problem. To address this, we present a general biologically-inspired framework for visual simulation of insect swarms. Our approach is inspired by the observation that insects exhibit emergent behaviors at various scales in nature. At the low level, our framework automatically selects and configures the most suitable steering algorithm for the local collision avoidance task. At the intermediate level, it processes insect trajectories into piecewise-linear segments and constructs probability distribution functions for sampling waypoints. These waypoints are then evaluated by the Metropolis- Hastings algorithm to preserve global structures of insect swarms at the high level. With this biologically inspired, data-driven approach, we are able to simulate insect behaviors at different scales and we evaluate our simulation using both qualitative and quantitative metrics. Furthermore, as insect data could be difficult to acquire, our framework can be adopted as a computer-assisted animation tool to interpret sketch-like input as user control and generate simulations of complex insect swarming phenomena.Item A Biophysically-Based Model of the Optical Properties of Skin Aging(The Eurographics Association and John Wiley & Sons Ltd., 2015) Iglesias-Guitian, Jose A.; Aliaga, Carlos; Jarabo, Adrian; Gutierrez, Diego; Olga Sorkine-Hornung and Michael WimmerThis paper presents a time-varying, multi-layered biophysically-based model of the optical properties of human skin, suitable for simulating appearance changes due to aging. We have identified the key aspects that cause such changes, both in terms of the structure of skin and its chromophore concentrations, and rely on the extensive medical and optical tissue literature for accurate data. Our model can be expressed in terms of biophysical parameters, optical parameters commonly used in graphics and rendering (such as spectral absorption and scattering coefficients), or more intuitively with higher-level parameters such as age, gender, skin care or skin type. It can be used with any rendering algorithm that uses diffusion profiles, and it allows to automatically simulate different types of skin at different stages of aging, avoiding the need for artistic input or costly capture processes. While the presented skin model is inspired on tissue optics studies, we also provided a simplified version valid for non-diagnostic applications.Item Boundary Handling at Cloth–Fluid Contact(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Huber, M.; Eberhardt, B.; Weiskopf, D.; Deussen, Oliver and Zhang, Hao (Richard)We present a robust and efficient method for the two‐way coupling between particle‐based fluid simulations and infinitesimally thin solids represented by triangular meshes. Our approach is based on a hybrid method that combines a repulsion force approach with a continuous intersection handling to guarantee that no penetration occurs. Moreover, boundary conditions for the tangential component of the fluid's velocity are implemented to model the different slip conditions. The proposed method is particularly useful for dynamic surfaces, like cloth and thin shells. In addition, we demonstrate how standard fluid surface reconstruction algorithms can be modified to prevent the calculated surface from intersecting close objects. For both the two‐way coupling and the surface reconstruction, we take into account that the fluid can wet the cloth. We have implemented our approach for the bidirectional interaction between liquid simulations based on Smoothed Particle Hydrodynamics (SPH) and standard mesh‐based cloth simulation systems.We present a robust and efficient method for the two‐way coupling between particle‐based fluid simulations and infinitesimally thin solids represented by triangular meshes. Our approach is based on a hybrid method that combines a repulsion force approach with a continuous intersection handling to guarantee that no penetration occurs.Item Brushables: Example-based Edge-aware Directional Texture Painting(The Eurographics Association and John Wiley & Sons Ltd., 2015) Lukáč, Michal; Fišer, Jakub; Asente, Paul; Lu, Jingwan; Shechtman, Eli; Sýkora, Daniel; Stam, Jos and Mitra, Niloy J. and Xu, KunIn this paper we present Brushables-a novel approach to example-based painting that respects user-specified shapes at the global level and preserves textural details of the source image at the local level. We formulate the synthesis as a joint optimization problem that simultaneously synthesizes the interior and the boundaries of the region, transferring relevant content from the source to meaningful locations in the target. We also provide an intuitive interface to control both local and global direction of textural details in the synthesized image. A key advantage of our approach is that it enables a ''combing'' metaphor in which the user can incrementally modify the target direction field to achieve the desired look. Based on this, we implement an interactive texture painting tool capable of handling more complex textures than ever before, and demonstrate its versatility on difficult inputs including vegetation, textiles, hair and painting media.Item Can Bi-cubic Surfaces be Class A?(The Eurographics Association and John Wiley & Sons Ltd., 2015) Karciauskas, Kestutis; Peters, Jörg; Mirela Ben-Chen and Ligang LiuClass A surface' is a term in the automotive design industry, describing spline surfaces with aesthetic, non- oscillating highlight lines. Tensor-product B-splines of degree bi-3 (bicubic) are routinely used to generate smooth design surfaces and are often the de facto standard for downstream processing. To bridge the gap, this paper explores and gives a concrete suggestion, how to achieve good highlight line distributions for irregular bi-3 tensor-product patch layout by allowing, along some seams, a slight mismatch of normals below the industry- accepted tolerance of one tenth of a degree. Near the irregularities, the solution can be viewed as transforming a higher-degree, high-quality formally smooth surface into a bi-3 spline surface with few pieces, sacrificing formal smoothness but qualitatively retaining the shape.Item Cell Lineage Visualisation(The Eurographics Association and John Wiley & Sons Ltd., 2015) Pretorius, A. Johannes; Khan, Imtiaz A.; Errington, Rachel J.; H. Carr, K.-L. Ma, and G. SantucciCell lineages describe the developmental history of cell populations and are produced by combining time-lapse imaging and image processing. Biomedical researchers study cell lineages to understand fundamental processes such as cell differentiation and the pharmacodynamic action of anticancer agents. Yet, the interpretation of cell lineages is hindered by their complexity and insufficient capacity for visual analysis. We present a novel approach for interactive visualisation of cell lineages. Based on an understanding of cellular biology and live-cell imaging methodology, we identify three requirements: multimodality (cell lineages combine spatial, temporal, and other properties), symmetry (related to lineage branching structure), and synchrony (related to temporal alignment of cellular events). We address these by combining visual summaries of the spatiotemporal behaviour of an arbitrary number of lineages, including variation from average behaviour, with node-link representations that emphasise the presence or absence of symmetry and synchrony. We illustrate the merit of our approach by presenting a real-world case study where the cytotoxic action of the anticancer drug topotecan was determined.Item CHC+RT: Coherent Hierarchical Culling for Ray Tracing(The Eurographics Association and John Wiley & Sons Ltd., 2015) Mattausch, Oliver; Bittner, Jirí; Jaspe, Alberto; Gobbetti, Enrico; Wimmer, Michael; Pajarola, Renato; Olga Sorkine-Hornung and Michael WimmerWe propose a new technique for in-core and out-of-core GPU ray tracing using a generalization of hierarchical occlusion culling in the style of the CHC++ method. Our method exploits the rasterization pipeline and hardware occlusion queries in order to create coherent batches of work for localized shader-based ray tracing kernels. By combining hierarchies in both ray space and object space, the method is able to share intermediate traversal results among multiple rays. We exploit temporal coherence among similar ray sets between frames and also within the given frame. A suitable management of the current visibility state makes it possible to benefit from occlusion culling for less coherent ray types like diffuse reflections. Since large scenes are still a challenge for modern GPU ray tracers, our method is most useful for scenes with medium to high complexity, especially since our method inherently supports ray tracing highly complex scenes that do not fit in GPU memory. For in-core scenes our method is comparable to CUDA ray tracing and performs up to 5:94 better than pure shader-based ray tracing.Item Collective Crowd Formation Transform with Mutual Information–Based Runtime Feedback(Copyright © 2015 The Eurographics Association and John Wiley & Sons Ltd., 2015) Xu, Mingliang; Wu, Yunpeng; Ye, Yangdong; Farkas, Illes; Jiang, Hao; Deng, Zhigang; Deussen, Oliver and Zhang, Hao (Richard)This paper introduces a new crowd formation transform approach to achieve visually pleasing group formation transition and control. Its core idea is to transform crowd formation shapes with a least effort pair assignment using the Kuhn–Munkres algorithm, discover clusters of agent subgroups using affinity propagation and Delaunay triangulation algorithms and apply subgroup‐based social force model (SFM) to the agent subgroups to achieve alignment, cohesion and collision avoidance. Meanwhile, mutual information of the dynamic crowd is used to guide agents' movement at runtime. This approach combines both macroscopic (involving least effort position assignment and clustering) and microscopic (involving SFM) controls of the crowd transformation to maximally maintain subgroups' local stability and dynamic collective behaviour, while minimizing the overall effort (i.e. travelling distance) of the agents during the transformation. Through simulation experiments and comparisons, we demonstrate that this approach is efficient and effective to generate visually pleasing and smooth transformations and outperform several existing crowd simulation approaches including reciprocal velocity avoidances, optimal reciprocal collision avoidance and OpenSteer.This paper introduces a new crowd formation transform approach to achieve visually pleasing group formation transition and control. Its core idea is to transform crowd formation shapes with a least‐effort pair assignment using the Kuhn–Munkres algorithm, discover clusters of agent subgroups using affinity propagation and Delaunay triangulation algorithms, and apply subgroup‐based SFM (social force model) to the agent subgroups to achieve alignment, cohesion and collision avoidance.Item Color Sequence Preserving Decolorization(The Eurographics Association and John Wiley & Sons Ltd., 2015) Yoo, Min-Joon; Lee, In-Kwon; Lee, Seungyong; Olga Sorkine-Hornung and Michael WimmerMany visualization techniques use images containing meaningful color sequences. If such images are converted to grayscale, the sequence is often distorted, compromising the information in the image.We preserve the significance of a color sequence during decolorization by mapping the colors from a source image to a grid in the CIELAB color space. We then identify the most significant hues, and thin the corresponding cells of the grid to approximate a curve in the color space, eliminating outliers using a weighted Laplacian eigenmap. This curve is then mapped to a monotonic sequence of gray levels. The saturation values of the resulting image are combined with the original intensity channels to restore details such as text. Our approach can also be used to recolor images containing color sequences, for instance for viewers with color-deficient vision, or to interpolate between two images that use the same geometry and color sequence to present different data.Item Composition-Aware Scene Optimization for Product Images(The Eurographics Association and John Wiley & Sons Ltd., 2015) Liu, Tianqiang; McCann, Jim; Li, Wilmot; Funkhouser, Thomas; Olga Sorkine-Hornung and Michael WimmerIncreasingly, companies are creating product advertisements and catalog images using computer renderings of 3D scenes. A common goal for these companies is to create aesthetically appealing compositions that highlight objects of interest within the context of a scene. Unfortunately, this goal is challenging, not only due to the need to balance the trade-off among aesthetic principles and design constraints, but also because of the huge search space induced by possible camera parameters, object placement, material choices, etc. Previous methods have investigated only optimization of camera parameters. In this paper, we develop a tool that starts from an initial scene description and a set of high-level constraints provided by a stylist and then automatically generates an optimized scene whose 2D composition is improved. It does so by locally adjusting the 3D object transformations, surface materials, and camera parameters. The value of this tool is demonstrated in a variety of applications motivated by product catalogs, including rough layout refinement, detail image creation, home planning, cultural customization, and text inlay placement. Results of a perceptual study indicate that our system produces images preferable for product advertisement compared to a more traditional camera-only optimization.