Volume 39 (2020)
Permanent URI for this community
Browse
Browsing Volume 39 (2020) by Title
Now showing 1 - 20 of 297
Results Per Page
Sort Options
Item 2019_editorial_v2(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Hauser, Helwig; Benes, Bedrich; Benes, Bedrich and Hauser, HelwigItem Accelerating Distributed Graphical Fluid Simulations with Micro‐partitioning(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Qu, Hang; Mashayekhi, Omid; Shah, Chinmayee; Levis, Philip; Benes, Bedrich and Hauser, HelwigGraphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from experts, which are time‐consuming and error prone, or dynamic approaches that estimate and react to future load, which are non‐deterministic and hard to debug.This paper proposes Birdshot scheduling, an automatic and purely static load balancing algorithm whose performance is close to expert decisions and reactive algorithms without their difficulty or complexity. Birdshot scheduling's key insight is to leverage the high‐latency, high‐throughput, full bisection bandwidth of cloud computing nodes. Birdshot scheduling splits the simulation domain into many micro‐partitions and statically assigns them to nodes randomly. Analytical results show that randomly assigned micro‐partitions balance load with high probability. The high‐throughput network easily handles the increased data transfers from micro‐partitions, and full bisection bandwidth allows random placement with no performance penalty. Overlapping the communications and computations of different micro‐partitions masks latency.Experiments with particle‐level set, SPH, FLIP and explicit Eulerian methods show that Birdshot scheduling speeds up simulations by a factor of 2‐3, and can out‐perform reactive scheduling algorithms. Birdshot scheduling performs within 21% of state‐of‐the‐art dynamic methods that require running a second, parallel simulation. Unlike speculative algorithms, Birdshot scheduling is purely static: it requires no controller, runtime data collection, partition migration or support for these operations from the programmer.Item Accelerating Liquid Simulation With an Improved Data‐Driven Method(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Gao, Yang; Zhang, Quancheng; Li, Shuai; Hao, Aimin; Qin, Hong; Benes, Bedrich and Hauser, HelwigIn physics‐based liquid simulation for graphics applications, pressure projection consumes a significant amount of computational time and is frequently the bottleneck of the computational efficiency. How to rapidly apply the pressure projection and at the same time how to accurately capture the liquid geometry are always among the most popular topics in the current research trend in liquid simulations. In this paper, we incorporate an artificial neural network into the simulation pipeline for handling the tricky projection step for liquid animation. Compared with the previous neural‐network‐based works for gas flows, this paper advocates new advances in the composition of representative features as well as the loss functions in order to facilitate fluid simulation with free‐surface boundary. Specifically, we choose both the velocity and the level‐set function as the additional representation of the fluid states, which allows not only the motion but also the boundary position to be considered in the neural network solver. Meanwhile, we use the divergence error in the loss function to further emulate the lifelike behaviours of liquid. With these arrangements, our method could greatly accelerate the pressure projection step in liquid simulation, while maintaining fairly convincing visual results. Additionally, our neutral network performs well when being applied to new scene synthesis even with varied boundaries or scales.Item Accurate Real-time 3D Gaze Tracking Using a Lightweight Eyeball Calibration(The Eurographics Association and John Wiley & Sons Ltd., 2020) Wen, Quan; Bradley, Derek; Beeler, Thabo; Park, Seonwook; Hilliges, Otmar; Yong, Jun-Hai; Xu, Feng; Panozzo, Daniele and Assarsson, Ulf3D gaze tracking from a single RGB camera is very challenging due to the lack of information in determining the accurate gaze target from a monocular RGB sequence. The eyes tend to occupy only a small portion of the video, and even small errors in estimated eye orientations can lead to very large errors in the triangulated gaze target. We overcome these difficulties with a novel lightweight eyeball calibration scheme that determines the user-specific visual axis, eyeball size and position in the head. Unlike the previous calibration techniques, we do not need the ground truth positions of the gaze points. In the online stage, gaze is tracked by a new gaze fitting algorithm, and refined by a 3D gaze regression method to correct for bias errors. Our regression is pre-trained on several individuals and works well for novel users. After the lightweight one-time user calibration, our method operates in real time. Experiments show that our technique achieves state-of-the-art accuracy in gaze angle estimation, and we demonstrate applications of 3D gaze target tracking and gaze retargeting to an animated 3D character.Item Adaptive Block Coordinate Descent for Distortion Optimization(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Naitsat, Alexander; Zhu, Yufeng; Zeevi, Yehoshua Y.; Benes, Bedrich and Hauser, HelwigWe present a new algorithm for optimizing geometric energies and computing positively oriented simplicial mappings. Our major improvements over the state‐of‐the‐art are: (i) introduction of new energies for repairing inverted and collapsed simplices; (ii) adaptive partitioning of vertices into coordinate blocks with the blended local‐global strategy for more efficient optimization and (iii) introduction of the displacement norm for improving convergence criteria and for controlling block partitioning. Together these improvements form the basis for the Adaptive Block Coordinate Descent (ABCD) algorithm aimed at robust geometric optimization. ABCD achieves state‐of‐the‐art results in distortion minimization, even under hard positional constraints and highly distorted invalid initializations that contain thousands of collapsed and inverted elements. Starting with an invalid non‐injective initial map, ABCD behaves as a modified block coordinate descent up to the point where the current mapping is cleared of invalid simplices. Then, the algorithm converges rapidly into the chosen iterative solver. Our method is very general, fast‐converging and easily parallelizable. We show over a wide range of 2D and 3D problems that our algorithm is more robust than existing techniques for locally injective mapping.Item An Adaptive BRDF Fitting Metric(The Eurographics Association and John Wiley & Sons Ltd., 2020) Bieron, James; Peers, Pieter; Dachsbacher, Carsten and Pharr, MattWe propose a novel image-driven fitting strategy for isotropic BRDFs. Whereas existing BRDF fitting methods minimize a cost function directly on the error between the fitted analytical BRDF and the measured isotropic BRDF samples, we also take into account the resulting material appearance in visualizations of the BRDF. This change of fitting paradigm improves the appearance reproduction fidelity, especially for analytical BRDF models that lack the expressiveness to reproduce the measured surface reflectance. We formulate BRDF fitting as a two-stage process that first generates a series of candidate BRDF fits based only on the BRDF error with measured BRDF samples. Next, from these candidates, we select the BRDF fit that minimizes the visual error. We demonstrate qualitatively and quantitatively improved fits for the Cook-Torrance and GGX microfacet BRDF models. Furthermore, we present an analysis of the BRDF fitting results, and show that the image-driven isotropic BRDF fits generalize well to other light conditions, and that depending on the measured material, a different weighting of errors with respect to the measured BRDF is necessary.Item Adaptive Matrix Completion for Fast Visibility Computations with Many Lights Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2020) Wang, Sunrise; Holzschuch, Nicolas; Dachsbacher, Carsten and Pharr, MattSeveral fast global illumination algorithms rely on the Virtual Point Lights framework. This framework separates illumination into two steps: first, propagate radiance in the scene and store it in virtual lights, then gather illumination from these virtual lights. To accelerate the second step, virtual lights and receiving points are grouped hierarchically, for example using Multi- Dimensional Lightcuts. Computing visibility between clusters of virtual lights and receiving points is a bottleneck. Separately, matrix completion algorithms reconstruct completely a low-rank matrix from an incomplete set of sampled elements. In this paper, we use adaptive matrix completion to approximate visibility information after an initial clustering step. We reconstruct visibility information using as little as 10%to 20%samples for most scenes, and combine it with shading information computed separately, in parallel on the GPU. Overall, our method computes global illumination 3 or more times faster than previous stateof- the-art methods.Item Adjustable Constrained Soft-Tissue Dynamics(The Eurographics Association and John Wiley & Sons Ltd., 2020) Wang, Bohan; Zheng, Mianlun; Barbic, Jernej; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LuePhysically based simulation is often combined with geometric mesh animation to add realistic soft-body dynamics to virtual characters. This is commonly done using constraint-based simulation whereby a soft-tissue simulation is constrained to geometric animation of a subpart (or otherwise proxy representation) of the character. We observe that standard constraint-based simulation suffers from an important flaw that limits the expressiveness of soft-body dynamics. Namely, under correct physics, the frequency and amplitude of soft-tissue dynamics arising from constraints (''inertial amplitude'') are coupled, and cannot be adjusted independently merely by adjusting the material properties of the model. This means that the space of physically based simulations is inherently limited and cannot capture all effects typically expected by computer animators. For example, animators need the ability to adjust the frequency, inertial amplitude, gravity sag and damping properties of the virtual character, independently from each other, as these are the primary visual characteristics of the soft-tissue dynamics. We demonstrate that independence can be achieved by transforming the equations of motion into a non-inertial reference coordinate frame, then scaling the resulting inertial forces, and then converting the equations of motion back to the inertial frame. Such scaling of inertia makes it possible for the animator to set the character's inertial amplitude independently from frequency. We also provide exact controls for the amount of character's gravity sag, and the damping properties. In our examples, we use linear blend skinning and pose-space deformation for geometric mesh animation, and the Finite Element Method for soft-body constrained simulation; but our idea of scaling inertial forces is general and applicable to other animation and simulation methods. We demonstrate our technique on several character examples.Item ALLSTEPS: Curriculum-driven Learning of Stepping Stone Skills(The Eurographics Association and John Wiley & Sons Ltd., 2020) Xie, Zhaoming; Ling, Hung Yu; Kim, Nam Hee; Panne, Michiel van de; Bender, Jan and Popa, TiberiuHumans are highly adept at walking in environments with foot placement constraints, including stepping-stone scenarios where footstep locations are fully constrained. Finding good solutions to stepping-stone locomotion is a longstanding and fundamental challenge for animation and robotics. We present fully learned solutions to this difficult problem using reinforcement learning. We demonstrate the importance of a curriculum for efficient learning and evaluate four possible curriculum choices compared to a non-curriculum baseline. Results are presented for a simulated humanoid, a realistic bipedal robot simulation and a monster character, in each case producing robust, plausible motions for challenging stepping stone sequences and terrains.Item Analysis of Schedule and Layout Tuning for Sparse Matrices With Compound Entries on GPUs(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Mueller‐Roemer, J. S.; Stork, A.; Fellner, D.; Benes, Bedrich and Hauser, HelwigLarge sparse matrices with compound entries, i.e. complex and quaternionic matrices as well as matrices with dense blocks, are a core component of many algorithms in geometry processing, physically based animation and other areas of computer graphics. We generalize several matrix layouts and apply joint schedule and layout autotuning to improve the performance of the sparse matrix‐vector product on massively parallel graphics processing units. Compared to schedule tuning without layout tuning, we achieve speedups of up to 5.5 × . In comparison to cuSPARSE, we achieve speedups of up to 4.7 × .Item Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting(The Eurographics Association and John Wiley & Sons Ltd., 2020) Ouyang, Wenqing; Peng, Yue; Yao, Yuxin; Zhang, Juyong; Deng, Bailin; Jacobson, Alec and Huang, QixingThe alternating direction multiplier method (ADMM) is widely used in computer graphics for solving optimization problems that can be nonsmooth and nonconvex. It converges quickly to an approximate solution, but can take a long time to converge to a solution of high-accuracy. Previously, Anderson acceleration has been applied to ADMM, by treating it as a fixed-point iteration for the concatenation of the dual variables and a subset of the primal variables. In this paper, we note that the equivalence between ADMM and Douglas-Rachford splitting reveals that ADMM is in fact a fixed-point iteration in a lower-dimensional space. By applying Anderson acceleration to such lower-dimensional fixed-point iteration, we obtain a more effective approach for accelerating ADMM. We analyze the convergence of the proposed acceleration method on nonconvex problems, and verify its effectiveness on a variety of computer graphics including geometry processing and physical simulation.Item Approximating Isosurfaces by Guaranteed-quality Triangular Meshes(The Eurographics Association and John Wiley & Sons Ltd., 2020) Hass, Joel; Trnkova, Maria; Jacobson, Alec and Huang, QixingWe describe a new method for approximating an implicit surface F by a piecewise-flat triangulated surface whose triangles are as close as possible to equilateral. The main advantage is improved mesh quality which is guaranteed for smooth surfaces. The GradNormal algorithm generates a triangular mesh that gives a piecewise-differentiable approximation of F, with angles between 35.2 and 101.5 degrees. As the mesh size approaches 0, the mesh converges to F through surfaces that are isotopic to F.Item Asynchronous Eulerian Liquid Simulation(The Eurographics Association and John Wiley & Sons Ltd., 2020) Koike, Tatsuya; Morishima, Shigeo; Ando, Ryoichi; Panozzo, Daniele and Assarsson, UlfWe present a novel method for simulating liquid with asynchronous time steps on Eulerian grids. Previous approaches focus on Smoothed Particle Hydrodynamics (SPH), Material Point Method (MPM) or tetrahedral Finite Element Method (FEM) but the method for simulating liquid purely on Eulerian grids have not yet been investigated. We address several challenges specifically arising from the Eulerian asynchronous time integrator such as regional pressure solve, asynchronous advection, interpolation, regional volume preservation, and dedicated segregation of the simulation domain according to the liquid velocity. We demonstrate our method on top of staggered grids combined with the level set method and the semi-Lagrangian scheme. We run several examples and show that our method considerably outperforms the global adaptive time step method with respect to the computational runtime on scenes where a large variance of velocity is present.Item Augmenting Node-Link Diagrams with Topographic Attribute Maps(The Eurographics Association and John Wiley & Sons Ltd., 2020) Preiner, Reinhold; Schmidt, Johanna; Krösl, Katharina; Schreck, Tobias; Mistelbauer, Gabriel; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaWe propose a novel visualization technique for graphs that are attributed with scalar data. In many scenarios, these attributes (e.g., birth date in a family network) provide ambient context information for the graph structure, whose consideration is important for different visual graph analysis tasks. Graph attributes are usually conveyed using different visual representations (e.g., color, size, shape) or by reordering the graph structure according to the attribute domain (e.g., timelines). While visual encodings allow graphs to be arranged in a readable layout, assessing contextual information such as the relative similarities of attributes across the graph is often cumbersome. In contrast, attribute-based graph reordering serves the comparison task of attributes, but typically strongly impairs the readability of the structural information given by the graph's topology. In this work, we augment force-directed node-link diagrams with a continuous ambient representation of the attribute context. This way, we provide a consistent overview of the graph's topological structure as well as its attributes, supporting a wide range of graph-related analysis tasks. We resort to an intuitive height field metaphor, illustrated by a topographic map rendering using contour lines and suitable color maps. Contour lines visually connect nodes of similar attribute values, and depict their relative arrangement within the global context. Moreover, our contextual representation supports visualizing attribute value ranges associated with graph nodes (e.g., lifespans in a family network) as trajectories routed through this height field. We discuss how user interaction with both the structural and the contextual information fosters exploratory graph analysis tasks. The effectiveness and versatility of our technique is confirmed in a user study and case studies from various application domains.Item Automatic Band-Limited Approximation of Shaders Using Mean-Variance Statistics in Clamped Domain(The Eurographics Association and John Wiley & Sons Ltd., 2020) Li, Shi; Wang, Rui; Huo, Yuchi; Zheng, Wenting; Hua, Wei; Bao, Hujun; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueIn this paper, we present a new shader smoothing method to improve the quality and generality of band-limiting shader programs. Previous work [YB18] treats intermediate values in the program as random variables, and utilizes mean and variance statistics to smooth shader programs. In this work, we extend such a band-limiting framework by exploring the observation that one intermediate value in the program is usually computed by a complex composition of functions, where the domain and range of composited functions heavily impact the statistics of smoothed programs. Accordingly, we propose three new shader smoothing rules for specific composition of functions by considering the domain and range, enabling better mean and variance statistics of approximations. Aside from continuous functions, the texture, such as color texture or normal map, is treated as a discrete function with limited domain and range, thereby can be processed similarly in the newly proposed framework. Experiments show that compared with previous work, our method is capable of generating better smoothness of shader programs as well as handling a broader set of shader programs.Item Automatic Design of Cable‐Tensioned Glass Shells(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Laccone, Francesco; Malomo, Luigi; Froli, Maurizio; Cignoni, Paolo; Pietroni, Nico; Benes, Bedrich and Hauser, HelwigWe propose an optimization algorithm for the design of post‐tensioned architectural shell structures, composed of triangular glass panels, in which glass has a load‐bearing function. Due to its brittle nature, glass can fail when it is subject to tensile forces. Hence, we enrich the structure with a cable net, which is specifically designed to post‐tension the shell, relieving the underlying glass structure from tension. We automatically derive an optimized cable layout, together with the appropriate pre‐load of each cable. The method is driven by a physically based static analysis of the shell subject to its service load. We assess our approach by applying non‐linear finite element analysis to several real‐scale application scenarios. Such a method of cable tensioning produces glass shells that are optimized from the material usage viewpoint since they exploit the high compression strength of glass. As a result, they are lightweight and robust. Both aesthetic and static qualities are improved with respect to grid shell competitors.Item A Bayesian Inference Framework for Procedural Material Parameter Estimation(The Eurographics Association and John Wiley & Sons Ltd., 2020) Guo, Yu; Hasan, Milos; Yan, Lingqi; Zhao, Shuang; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueProcedural material models have been gaining traction in many applications thanks to their flexibility, compactness, and easy editability. We explore the inverse rendering problem of procedural material parameter estimation from photographs, presenting a unified view of the problem in a Bayesian framework. In addition to computing point estimates of the parameters by optimization, our framework uses a Markov Chain Monte Carlo approach to sample the space of plausible material parameters, providing a collection of plausible matches that a user can choose from, and efficiently handling both discrete and continuous model parameters. To demonstrate the effectiveness of our framework, we fit procedural models of a range of materials-wall plaster, leather, wood, anisotropic brushed metals and layered metallic paints-to both synthetic and real target images.Item A Bending Model for Nodal Discretizations of Yarn-Level Cloth(The Eurographics Association and John Wiley & Sons Ltd., 2020) Pizana, José María; Rodríguez, Alejandro; Cirio, Gabriel; Otaduy, Miguel A.; Bender, Jan and Popa, TiberiuTo deploy yarn-level cloth simulations in production environments, it is paramount to design very efficient implementations, which mitigate the cost of the extremely high resolution. To this end, nodal discretizations aligned with the regularity of the fabric structure provide an optimal setting for efficient GPU implementations. However, nodal discretizations complicate the design of robust and controllable bending. In this paper, we address this challenge, and propose a model of bending that is both robust and controllable, and employs only nodal degrees of freedom. We extract information of yarn and fabric orientation implicitly from the nodal degrees of freedom, with no need to augment the model explicitly. But most importantly, and unlike previous formulations that use implicit orientations, the computation of bending forces bears no overhead with respect to other nodal forces such as stretch. This is possible by tracking optimal orientations efficiently. We demonstrate the impact of our bending model in examples with controllable anisotropy, as well as ironing, wrinkling, and plasticity.Item Binary Ostensibly-Implicit Trees for Fast Collision Detection(The Eurographics Association and John Wiley & Sons Ltd., 2020) Chitalu, Floyd M.; Dubach, Christophe; Komura, Taku; Panozzo, Daniele and Assarsson, UlfWe present a simple, efficient and low-memory technique, targeting fast construction of bounding volume hierarchies (BVH) for broad-phase collision detection. To achieve this, we devise a novel representation of BVH trees in memory. We develop a mapping of the implicit index representation to compact memory locations, based on simple bit-shifts, to then construct and evaluate bounding volume test trees (BVTT) during collision detection with real-time performance. We model the topology of the BVH tree implicitly as binary encodings which allows us to determine the nodes missing from a complete binary tree using the binary representation of the number of missing nodes. The simplicity of our technique allows for fast hierarchy construction achieving over 6x speedup over the state-of-the-art. Making use of these characteristics, we show that not only it is feasible to rebuild the BVH at every frame, but that using our technique, it is actually faster than refitting and more memory efficient.Item Bombalytics: Visualization of Competition and Collaboration Strategies of Players in a Bomb Laying Game(The Eurographics Association and John Wiley & Sons Ltd., 2020) Agarwal, Shivam; Wallner, Günter; Beck, Fabian; Viola, Ivan and Gleicher, Michael and Landesberger von Antburg, TatianaCompetition and collaboration form complex interaction patterns between the agents and objects involved. Only by understanding these interaction patterns, we can reveal the strategies the participating parties applied. In this paper, we study such competition and collaboration behavior for a computer game. Serving as a testbed for artificial intelligence, the multiplayer bomb laying game Pommerman provides a rich source of advanced behavior of computer agents. We propose a visualization approach that shows an overview of multiple games, with a detailed timeline-based visualization for exploring the specifics of each game. Since an analyst can only fully understand the data when considering the direct and indirect interactions between agents, we suggest various visual encodings of these interactions. Based on feedback from expert users and an application example, we demonstrate that the approach helps identify central competition strategies and provides insights on collaboration.