Resolving Non-Manifoldness on Meshes from Dual Marching Cubes

dc.contributor.authorZint, Danielen_US
dc.contributor.authorGrosso, Robertoen_US
dc.contributor.authorGürtler, Philippen_US
dc.contributor.editorPelechano, Nuriaen_US
dc.contributor.editorVanderhaeghe, Daviden_US
dc.date.accessioned2022-04-22T08:16:13Z
dc.date.available2022-04-22T08:16:13Z
dc.date.issued2022
dc.description.abstractThere are several methods that reconstruct surfaces from volume data by generating triangle or quad meshes on the dual of the uniform grid. Those methods often provide meshes with better quality than the famous marching cubes. However, they have a common issue: the meshes are not guaranteed to be manifold. We address this issue by presenting a post-processing routine that resolves all non-manifold edges with local refinement. New vertices are positioned on the trilinear interpolant. We verify our method on a wide range of data sets and show that we are capable of resolving all non-manifold issues.en_US
dc.description.sectionheadersGeometry and Shape
dc.description.seriesinformationEurographics 2022 - Short Papers
dc.identifier.doi10.2312/egs.20221029
dc.identifier.isbn978-3-03868-169-4
dc.identifier.issn1017-4656
dc.identifier.pages45-48
dc.identifier.pages4 pages
dc.identifier.urihttps://doi.org/10.2312/egs.20221029
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egs20221029
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Computing methodologies --> Shape analysis; Mesh geometry models; Parallel algorithms
dc.subjectComputing methodologies
dc.subjectShape analysis
dc.subjectMesh geometry models
dc.subjectParallel algorithms
dc.titleResolving Non-Manifoldness on Meshes from Dual Marching Cubesen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
045-048.pdf
Size:
6.55 MB
Format:
Adobe Portable Document Format