41-Issue 3
Permanent URI for this collection
Browse
Browsing 41-Issue 3 by Issue Date
Now showing 1 - 20 of 45
Results Per Page
Sort Options
Item Nested Papercrafts for Anatomical and Biological Edutainment(The Eurographics Association and John Wiley & Sons Ltd., 2022) Schindler, Marwin; Korpitsch, Thorsten; Raidou, Renata Georgia; Wu, Hsiang-Yun; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasIn this paper, we present a new workflow for the computer-aided generation of physicalizations, addressing nested configurations in anatomical and biological structures. Physicalizations are an important component of anatomical and biological education and edutainment. However, existing approaches have mainly revolved around creating data sculptures through digital fabrication. Only a few recent works proposed computer-aided pipelines for generating sculptures, such as papercrafts, with affordable and readily available materials. Papercraft generation remains a challenging topic by itself. Yet, anatomical and biological applications pose additional challenges, such as reconstruction complexity and insufficiency to account for multiple, nested structures-often present in anatomical and biological structures. Our workflow comprises the following steps: (i) define the nested configuration of the model and detect its levels, (ii) calculate the viewpoint that provides optimal, unobstructed views on inner levels, (iii) perform cuts on the outer levels to reveal the inner ones based on the viewpoint selection, (iv) estimate the stability of the cut papercraft to ensure a reliable outcome, (v) generate textures at each level, as a smart visibility mechanism that provides additional information on the inner structures, and (vi) unfold each textured mesh guaranteeing reconstruction. Our novel approach exploits the interactivity of nested papercraft models for edutainment purposes.Item Rich Screen Reader Experiences for Accessible Data Visualization(The Eurographics Association and John Wiley & Sons Ltd., 2022) Zong, Jonathan; Lee, Crystal; Lundgard, Alan; Jang, JiWoong; Hajas, Daniel; Satyanarayan, Arvind; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasCurrent web accessibility guidelines ask visualization designers to support screen readers via basic non-visual alternatives like textual descriptions and access to raw data tables. But charts do more than summarize data or reproduce tables; they afford interactive data exploration at varying levels of granularity-from fine-grained datum-by-datum reading to skimming and surfacing high-level trends. In response to the lack of comparable non-visual affordances, we present a set of rich screen reader experiences for accessible data visualization and exploration. Through an iterative co-design process, we identify three key design dimensions for expressive screen reader accessibility: structure, or how chart entities should be organized for a screen reader to traverse; navigation, or the structural, spatial, and targeted operations a user might perform to step through the structure; and, description, or the semantic content, composition, and verbosity of the screen reader's narration. We operationalize these dimensions to prototype screen-reader-accessible visualizations that cover a diverse range of chart types and combinations of our design dimensions. We evaluate a subset of these prototypes in a mixed-methods study with 13 blind and visually impaired readers. Our findings demonstrate that these designs help users conceptualize data spatially, selectively attend to data of interest at different levels of granularity, and experience control and agency over their data analysis process.Item A Typology of Guidance Tasks in Mixed-Initiative Visual Analytics Environments(The Eurographics Association and John Wiley & Sons Ltd., 2022) Pérez-Messina, Ignacio; Ceneda, Davide; El-Assady, Mennatallah; Miksch, Silvia; Sperrle, Fabian; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasGuidance has been proposed as a conceptual framework to understand how mixed-initiative visual analytics approaches can actively support users as they solve analytical tasks. While user tasks received a fair share of attention, it is still not completely clear how they could be supported with guidance and how such support could influence the progress of the task itself. Our observation is that there is a research gap in understanding the effect of guidance on the analytical discourse, in particular, for the knowledge generation in mixed-initiative approaches. As a consequence, guidance in a visual analytics environment is usually indistinguishable from common visualization features, making user responses challenging to predict and measure. To address these issues, we take a system perspective to propose the notion of guidance tasks and we present it as a typology closely aligned to established user task typologies. We derived the proposed typology directly from a model of guidance in the knowledge generation process and illustrate its implications for guidance design. By discussing three case studies, we show how our typology can be applied to analyze existing guidance systems. We argue that without a clear consideration of the system perspective, the analysis of tasks in mixed-initiative approaches is incomplete. Finally, by analyzing matchings of user and guidance tasks, we describe how guidance tasks could either help the user conclude the analysis or change its course.Item How Accessible is my Visualization? Evaluating Visualization Accessibility with Chartability(The Eurographics Association and John Wiley & Sons Ltd., 2022) Elavsky, Frank; Bennett, Cynthia; Moritz, Dominik; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasNovices and experts have struggled to evaluate the accessibility of data visualizations because there are no common shared guidelines across environments, platforms, and contexts in which data visualizations are authored. Between non-specific standards bodies like WCAG, emerging research, and guidelines from specific communities of practice, it is hard to organize knowledge on how to evaluate accessible data visualizations. We present Chartability, a set of heuristics synthesized from these various sources which enables designers, developers, researchers, and auditors to evaluate data-driven visualizations and interfaces for visual, motor, vestibular, neurological, and cognitive accessibility. In this paper, we outline our process of making a set of heuristics and accessibility principles for Chartability and highlight key features in the auditing process. Working with participants on real projects, we found that data practitioners with a novice level of accessibility skills were more confident and found auditing to be easier after using Chartability. Expert accessibility practitioners were eager to integrate Chartability into their own work. Reflecting on Chartability's development and the preliminary user evaluation, we discuss tradeoffs of open projects, working with high-risk evaluations like auditing projects in the wild, and challenge future research projects at the intersection of visualization and accessibility to consider the broad intersections of disabilities.Item Leveraging Analysis History for Improved In Situ Visualization Recommendation(The Eurographics Association and John Wiley & Sons Ltd., 2022) Epperson, Will; Lee, Doris Jung-Lin; Wang, Leijie; Agarwal, Kunal; Parameswaran, Aditya G.; Moritz, Dominik; Perer, Adam; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasExisting visualization recommendation systems commonly rely on a single snapshot of a dataset to suggest visualizations to users. However, exploratory data analysis involves a series of related interactions with a dataset over time rather than one-off analytical steps. We present Solas, a tool that tracks the history of a user's data analysis, models their interest in each column, and uses this information to provide visualization recommendations, all within the user's native analytical environment. Recommending with analysis history improves visualizations in three primary ways: task-specific visualizations use the provenance of data to provide sensible encodings for common analysis functions, aggregated history is used to rank visualizations by our model of a user's interest in each column, and column data types are inferred based on applied operations. We present a usage scenario and a user evaluation demonstrating how leveraging analysis history improves in situ visualization recommendations on real-world analysis tasks.Item Interactively Assessing Disentanglement in GANs(The Eurographics Association and John Wiley & Sons Ltd., 2022) Jeong, Sangwon; Liu, Shusen; Berger, Matthew; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasGenerative adversarial networks (GAN) have witnessed tremendous growth in recent years, demonstrating wide applicability in many domains. However, GANs remain notoriously difficult for people to interpret, particularly for modern GANs capable of generating photo-realistic imagery. In this work we contribute a visual analytics approach for GAN interpretability, where we focus on the analysis and visualization of GAN disentanglement. Disentanglement is concerned with the ability to control content produced by a GAN along a small number of distinct, yet semantic, factors of variation. The goal of our approach is to shed insight on GAN disentanglement, above and beyond coarse summaries, instead permitting a deeper analysis of the data distribution modeled by a GAN. Our visualization allows one to assess a single factor of variation in terms of groupings and trends in the data distribution, where our analysis seeks to relate the learned representation space of GANs with attribute-based semantic scoring of images produced by GANs. Through use-cases, we show that our visualization is effective in assessing disentanglement, allowing one to quickly recognize a factor of variation and its overall quality. In addition, we show how our approach can highlight potential dataset biases learned by GANs.Item LOOPS: LOcally Optimized Polygon Simplification(The Eurographics Association and John Wiley & Sons Ltd., 2022) Amiraghdam, Alireza; Diehl, Alexandra; Pajarola, Renato; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasDisplaying polygonal vector data is essential in various application scenarios such as geometry visualization, vector graphics rendering, CAD drawing and in particular geographic, or cartographic visualization. Dealing with static polygonal datasets that has a large scale and are highly detailed poses several challenges to the efficient and adaptive display of polygons in interactive geographic visualization applications. For linear vector data, only recently a GPU-based level-of-detail (LOD) polyline simplification and rendering approach has been presented which can perform locally-adaptive LOD visualization of large-scale line datasets interactively. However, locally optimized LOD simplification and interactive display of large-scale polygon data, consisting of filled vector line loops, remains still a challenge, specifically in 3D geographic visualizations where varying LOD over a scene is necessary. Our solution to this challenge is a novel technique for locally-optimized simplification and visualization of 2D polygons over a 3D terrain which features a parallelized point-inside-polygon testing mechanism. Our approach is capable of employing any simplification algorithm that sequentially removes vertices such as Douglas-Peucker and Wang-Müller. Moreover, we generalized our technique to also visualizing polylines in order to have a unified method for displaying both data types. The results and performance analysis show that our new algorithm can handle large datasets containing polygons composed of millions of segments in real time, and has a lower memory demand and higher performance in comparison to prior methods of line simplification and visualization.Item DanmuVis: Visualizing Danmu Content Dynamics and Associated Viewer Behaviors in Online Videos(The Eurographics Association and John Wiley & Sons Ltd., 2022) Chen, Shuai; Li, Sihang; Li, Yanda; Zhu, Junlin; Long, Juanjuan; Chen, Siming; Zhang, Jiawan; Yuan, Xiaoru; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasDanmu (Danmaku) is a unique social media service in online videos, especially popular in Japan and China, for viewers to write comments while watching videos. The danmu comments are overlaid on the video screen and synchronized to the associated video time, indicating viewers' thoughts of the video clip. This paper introduces an interactive visualization system to analyze danmu comments and associated viewer behaviors in a collection of videos and enable detailed exploration of one video on demand. The watching behaviors of viewers are identified by comparing video time and post time of viewers' danmu. The system supports analyzing danmu content and viewers' behaviors against both video time and post time to gain insights into viewers' online participation and perceived experience. Our evaluations, including usage scenarios and user interviews, demonstrate the effectiveness and usability of our system.Item CorpusVis: Visual Analysis of Digital Sheet Music Collections(The Eurographics Association and John Wiley & Sons Ltd., 2022) Miller, Matthias; Rauscher, Julius; Keim, Daniel A.; El-Assady, Mennatallah; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasManually investigating sheet music collections is challenging for music analysts due to the magnitude and complexity of underlying features, structures, and contextual information. However, applying sophisticated algorithmic methods would require advanced technical expertise that analysts do not necessarily have. Bridging this gap, we contribute CorpusVis, an interactive visual workspace, enabling scalable and multi-faceted analysis. Our proposed visual analytics dashboard provides access to computational methods, generating varying perspectives on the same data. The proposed application uses metadata including composers, type, epoch, and low-level features, such as pitch, melody, and rhythm. To evaluate our approach, we conducted a pair-analytics study with nine participants. The qualitative results show that CorpusVis supports users in performing exploratory and confirmatory analysis, leading them to new insights and findings. In addition, based on three exemplary workflows, we demonstrate how to apply our approach to different tasks, such as exploring musical features or comparing composers.Item Exploring How Visualization Design and Situatedness Evoke Compassion in the Wild(The Eurographics Association and John Wiley & Sons Ltd., 2022) Morais, Luiz; Andrade, Nazareno; Sousa, Dandara; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasThis work explores how the design and situatedness of data representations affect people's compassion with a case study concerning harassment episodes in a public place. Results contribute to advancing the understanding of how visualizations can evoke emotions and their impact on prosocial behaviors, such as helping people in need. Recent literature examined the effect of different on-screen data representations on emotion or prosociality, but little has been done concerning visualizations shown in a public place - especially a space contextually relevant to the data - or presented through unconventional media formats such as physical marks. We conducted two in-the-wild studies to investigate how different factors affect people's selfreported compassion and intention to donate. We compared three ways of presenting data about the harassment cases: (1) communicating data only verbally; (2) using a printed poster with aggregated information; and (3) using a physicalization with detailed information about each story. We found that the physicalization influenced people to donate more than only hearing about the data, but it is unclear if the same applied to the poster visualization. Also, passers-by reported a likely small increase in compassion when they saw the physicalization instead of the poster. We also examined the role of situatedness by showing the physicalization in a site that is not contextually relevant to the data. Our results suggest that people had a similar intention to donate and levels of compassion in both places. Those findings may indicate that using specific visualization designs to support campaigns about sensitive causes (e.g., sexual harassment) can increase the emotional response of passers-by and may motivate them to help, independently of where the data representation is shown. Finally, this work also informs on the strengths and weaknesses of using research in the wild to evaluate data visualizations in public spaces.Item Misinformed by Visualization: What Do We Learn From Misinformative Visualizations?(The Eurographics Association and John Wiley & Sons Ltd., 2022) Lo, Leo Yu-Ho; Gupta, Ayush; Shigyo, Kento; Wu, Aoyu; Bertini, Enrico; Qu, Huamin; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasData visualization is powerful in persuading an audience. However, when it is done poorly or maliciously, a visualization may become misleading or even deceiving. Visualizations give further strength to the dissemination of misinformation on the Internet. The visualization research community has long been aware of visualizations that misinform the audience, mostly associated with the terms ''lie'' and ''deceptive.'' Still, these discussions have focused only on a handful of cases. To better understand the landscape of misleading visualizations, we open-coded over one thousand real-world visualizations that have been reported as misleading. From these examples, we discovered 74 types of issues and formed a taxonomy of misleading elements in visualizations. We found four directions that the research community can follow to widen the discussion on misleading visualizations: (1) informal fallacies in visualizations, (2) exploiting conventions and data literacy, (3) deceptive tricks in uncommon charts, and (4) understanding the designers' dilemma. This work lays the groundwork for these research directions, especially in understanding, detecting, and preventing them.Item LineageD: An Interactive Visual System for Plant Cell Lineage Assignments based on Correctable Machine Learning(The Eurographics Association and John Wiley & Sons Ltd., 2022) Hong, Jiayi; Trubuil, Alain; Isenberg, Tobias; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasWe describe LineageD-a hybrid web-based system to predict, visualize, and interactively adjust plant embryo cell lineages. Currently, plant biologists explore the development of an embryo and its hierarchical cell lineage manually, based on a 3D dataset that represents the embryo status at one point in time. This human decision-making process, however, is time-consuming, tedious, and error-prone due to the lack of integrated graphical support for specifying the cell lineage. To fill this gap, we developed a new system to support the biologists in their tasks using an interactive combination of 3D visualization, abstract data visualization, and correctable machine learning to modify the proposed cell lineage. We use existing manually established cell lineages to obtain a neural network model. We then allow biologists to use this model to repeatedly predict assignments of a single cell division stage. After each hierarchy level prediction, we allow them to interactively adjust the machine learning based assignment, which we then integrate into the pool of verified assignments for further predictions. In addition to building the hierarchy this way in a bottom-up fashion, we also offer users to divide the whole embryo and create the hierarchy tree in a top-down fashion for a few steps, improving the ML-based assignments by reducing the potential for wrong predictions. We visualize the continuously updated embryo and its hierarchical development using both 3D spatial and abstract tree representations, together with information about the model's confidence and spatial properties. We conducted case study validations with five expert biologists to explore the utility of our approach and to assess the potential for LineageD to be used in their daily workflow. We found that the visualizations of both 3D representations and abstract representations help with decision making and the hierarchy tree top-down building approach can reduce assignments errors in real practice.Item AirLens: Multi-Level Visual Exploration of Air Quality Evolution in Urban Agglomerations(The Eurographics Association and John Wiley & Sons Ltd., 2022) Qu, Dezhan; Lv, Cheng; Lin, Yiming; Zhang, Huijie; Wang, Rong; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasThe precise prevention and control of air pollution is a great challenge faced by environmental experts in recent years. Understanding the air quality evolution in the urban agglomeration is important for coordinated control of air pollution. However, the complex pollutant interactions between different cities lead to the collaborative evolution of air quality. The existing statistical and machine learning methods cannot well support the comprehensive analysis of the dynamic air quality evolution. In this study, we propose AirLens, an interactive visual analytics system that can help domain experts explore and understand the air quality evolution in the urban agglomeration from multiple levels and multiple aspects. To facilitate the cognition of the complex multivariate spatiotemporal data, we first propose a multi-run clustering strategy with a novel glyph design for summarizing and understanding the typical pollutant patterns effectively. On this basis, the system supports the multi-level exploration of air quality evolution, namely, the overall level, stage level and detail level. Frequent pattern mining, city community extraction and useful filters are integrated into the system for discovering significant information comprehensively. The case study and positive feedback from domain experts demonstrate the effectiveness and usability of AirLens.Item Visual Parameter Selection for Spatial Blind Source Separation(The Eurographics Association and John Wiley & Sons Ltd., 2022) Piccolotto, Nikolaus; Bögl, Markus; Muehlmann, Christoph; Nordhausen, Klaus; Filzmoser, Peter; Miksch, Silvia; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasAnalysis of spatial multivariate data, i.e., measurements at irregularly-spaced locations, is a challenging topic in visualization and statistics alike. Such data are integral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they, together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifically designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which are themselves complex spatial objects. Setting these parameters involves navigating two large and interdependent parameter spaces, while also taking into account prior knowledge of the physical reality represented by the data. To support analysts in this process, we developed a visual analytics prototype. We evaluated it with experts in visualization, SBSS, and geochemistry. Our evaluations show that our interactive prototype allows to define complex and realistic parameter settings efficiently, which was so far impractical. Settings identified by a non-expert led to remarkable and surprising insights for a domain expert. Therefore, this paper presents important first steps to enable the use of a promising analysis method for spatial multivariate data.Item Exploring Multivariate Event Sequences with an Interactive Similarity Builder(The Eurographics Association and John Wiley & Sons Ltd., 2022) Xu, Shaobin; Sun, Minghui; Zhang, Zhengtai; Xue, Hao; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasSimilarity-based exploration is an effective method in knowledge discovery. Faced with multivariate event sequence data (MVES), developing a satisfactory similarity measurement for a specific question is challenging because of the heterogeneity introduced by numerous attributes with different data formats, coupled with their associations. Additionally, the absence of effective validation feedback makes judging the goodness of a measurement scheme a time-consuming and error-prone procedure. To free analysts from tedious programming to concentrate on the exploration of MVES data, this paper introduces an interactive similarity builder, where analysts can use visual building blocks for assembling similarity measurements in a drag-and-drop and incremental fashion. Based on the builder, we further propose a visual analytics framework that provides multi-granularity visual validations for measurement schemes and supports a recursive workflow for refining the focus set. We illustrate the power of our prototype through a case study and a user study with real-world datasets. Results suggest that the system improves the efficiency of developing similarity measurements and the usefulness of exploring MVES data.Item Barrio: Customizable Spatial Neighborhood Analysis and Comparison for Nanoscale Brain Structures(The Eurographics Association and John Wiley & Sons Ltd., 2022) Troidl, Jakob; Cali, Corrado; Gröller, Eduard; Pfister, Hanspeter; Hadwiger, Markus; Beyer, Johanna; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasHigh-resolution electron microscopy imaging allows neuroscientists to reconstruct not just entire cells but individual cell substructures (i.e., cell organelles) as well. Based on these data, scientists hope to get a better understanding of brain function and development through detailed analysis of local organelle neighborhoods. In-depth analyses require efficient and scalable comparison of a varying number of cell organelles, ranging from two to hundreds of local spatial neighborhoods. Scientists need to be able to analyze the 3D morphologies of organelles, their spatial distributions and distances, and their spatial correlations. We have designed Barrio as a configurable framework that scientists can adjust to their preferred workflow, visualizations, and supported user interactions for their specific tasks and domain questions. Furthermore, Barrio provides a scalable comparative visualization approach for spatial neighborhoods that automatically adjusts visualizations based on the number of structures to be compared. Barrio supports small multiples of spatial 3D views as well as abstract quantitative views, and arranges them in linked and juxtaposed views. To adapt to new domain-specific analysis scenarios, we allow the definition of individualized visualizations and their parameters for each analysis session. We present an in-depth case study for mitochondria analysis in neuronal tissue and demonstrate the usefulness of Barrio in a qualitative user study with neuroscientists.Item Reusing Interactive Analysis Workflows(The Eurographics Association and John Wiley & Sons Ltd., 2022) Gadhave, Kiran; Cutler, Zach; Lex, Alexander; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasInteractive visual analysis has many advantages, but an important disadvantage is that analysis processes and workflows cannot be easily stored and reused. This is in contrast to code-based analysis workflows, which can simply be run on updated datasets, and adapted when necessary. In this paper, we introduce methods to capture workflows in interactive visualization systems for different interactions such as selections, filters, categorizing/grouping, labeling, and aggregation. These workflows can then be applied to updated datasets, making interactive visualization sessions reusable. We demonstrate this specification using an interactive visualization system that tracks interaction provenance, and allows generating workflows from the recorded actions. The system can then be used to compare different versions of datasets and apply workflows to them. Finally, we introduce a Python library that can load workflows and apply it to updated datasets directly in a computational notebook, providing a seamless bridge between computational workflows and interactive visualization tools.Item Streaming Approach to In Situ Selection of Key Time Steps for Time-Varying Volume Data(The Eurographics Association and John Wiley & Sons Ltd., 2022) Wu, Mengxi; Chiang, Yi-Jen; Musco, Christopher; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasKey time steps selection, i.e., selecting a subset of most representative time steps, is essential for effective and efficient scientific visualization of large time-varying volume data. In particular, as computer simulations continue to grow in size and complexity, they often generate output that exceeds both the available storage capacity and bandwidth for transferring results to storage, making it indispensable to save only a subset of time steps. At the same time, this subset must be chosen so that it is highly representative, to facilitate post-processing and reconstruction with high fidelity. The key time steps selection problem is especially challenging in the in situ setting, where we can only process data in one pass in an online streaming fashion, using a small amount of main memory and fast computation. In this paper, we formulate the problem as that of optimal piece-wise linear interpolation. We first apply a method from numerical linear algebra to compute linear interpolation solutions and their errors in an online streaming fashion. Using that method as a building block, we can obtain a global optimal solution for the piece-wise linear interpolation problem via a standard dynamic programming (DP) algorithm. However, this approach needs to process the time steps in multiple passes and is too slow for the in situ setting. To address this issue, we introduce a novel approximation algorithm, which processes time steps in one pass in an online streaming fashion, with very efficient computing time and main memory space both in theory and in practice. The algorithm is suitable for the in situ setting. Moreover, we prove that our algorithm, which is based on a greedy update rule, has strong theoretical guarantees on the approximation quality and the number of time steps stored. To the best of our knowledge, this is the first algorithm suitable for in situ key time steps selection with such theoretical guarantees, and is the main contribution of this paper. Experiments demonstrate the efficacy of our new techniques.Item Effective Use of Likert Scales in Visualization Evaluations: A Systematic Review(The Eurographics Association and John Wiley & Sons Ltd., 2022) South, Laura; Saffo, David; Vitek, Olga; Dunne, Cody; Borkin, Michelle A.; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasLikert scales are often used in visualization evaluations to produce quantitative estimates of subjective attributes, such as ease of use or aesthetic appeal. However, the methods used to collect, analyze, and visualize data collected with Likert scales are inconsistent among evaluations in visualization papers. In this paper, we examine the use of Likert scales as a tool for measuring subjective response in a systematic review of 134 visualization evaluations published between 2009 and 2019. We find that papers with both objective and subjective measures do not hold the same reporting and analysis standards for both aspects of their evaluation, producing less rigorous work for the subjective qualities measured by Likert scales. Additionally, we demonstrate that many papers are inconsistent in their interpretations of Likert data as discrete or continuous and may even sacrifice statistical power by applying nonparametric tests unnecessarily. Finally, we identify instances where key details about Likert item construction with the potential to bias participant responses are omitted from evaluation methodology reporting, inhibiting the feasibility and reliability of future replication studies. We summarize recommendations from other fields for best practices with Likert data in visualization evaluations, based on the results of our survey.Item Level of Detail Exploration of Electronic Transition Ensembles using Hierarchical Clustering(The Eurographics Association and John Wiley & Sons Ltd., 2022) Sidwall Thygesen, Signe; Masood, Talha Bin; Linares, Mathieu; Natarajan, Vijay; Hotz, Ingrid; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasWe present a pipeline for the interactive visual analysis and exploration of molecular electronic transition ensembles. Each ensemble member is specified by a molecular configuration, the charge transfer between two molecular states, and a set of physical properties. The pipeline is targeted towards theoretical chemists, supporting them in comparing and characterizing electronic transitions by combining automatic and interactive visual analysis. A quantitative feature vector characterizing the electron charge transfer serves as the basis for hierarchical clustering as well as for the visual representations. The interface for the visual exploration consists of four components. A dendrogram provides an overview of the ensemble. It is augmented with a level of detail glyph for each cluster. A scatterplot using dimensionality reduction provides a second visualization, highlighting ensemble outliers. Parallel coordinates show the correlation with physical parameters. A spatial representation of selected ensemble members supports an in-depth inspection of transitions in a form that is familiar to chemists. All views are linked and can be used to filter and select ensemble members. The usefulness of the pipeline is shown in three different case studies.