41-Issue 3
Permanent URI for this collection
Browse
Browsing 41-Issue 3 by Title
Now showing 1 - 20 of 45
Results Per Page
Sort Options
Item AirLens: Multi-Level Visual Exploration of Air Quality Evolution in Urban Agglomerations(The Eurographics Association and John Wiley & Sons Ltd., 2022) Qu, Dezhan; Lv, Cheng; Lin, Yiming; Zhang, Huijie; Wang, Rong; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasThe precise prevention and control of air pollution is a great challenge faced by environmental experts in recent years. Understanding the air quality evolution in the urban agglomeration is important for coordinated control of air pollution. However, the complex pollutant interactions between different cities lead to the collaborative evolution of air quality. The existing statistical and machine learning methods cannot well support the comprehensive analysis of the dynamic air quality evolution. In this study, we propose AirLens, an interactive visual analytics system that can help domain experts explore and understand the air quality evolution in the urban agglomeration from multiple levels and multiple aspects. To facilitate the cognition of the complex multivariate spatiotemporal data, we first propose a multi-run clustering strategy with a novel glyph design for summarizing and understanding the typical pollutant patterns effectively. On this basis, the system supports the multi-level exploration of air quality evolution, namely, the overall level, stage level and detail level. Frequent pattern mining, city community extraction and useful filters are integrated into the system for discovering significant information comprehensively. The case study and positive feedback from domain experts demonstrate the effectiveness and usability of AirLens.Item Barrio: Customizable Spatial Neighborhood Analysis and Comparison for Nanoscale Brain Structures(The Eurographics Association and John Wiley & Sons Ltd., 2022) Troidl, Jakob; Cali, Corrado; Gröller, Eduard; Pfister, Hanspeter; Hadwiger, Markus; Beyer, Johanna; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasHigh-resolution electron microscopy imaging allows neuroscientists to reconstruct not just entire cells but individual cell substructures (i.e., cell organelles) as well. Based on these data, scientists hope to get a better understanding of brain function and development through detailed analysis of local organelle neighborhoods. In-depth analyses require efficient and scalable comparison of a varying number of cell organelles, ranging from two to hundreds of local spatial neighborhoods. Scientists need to be able to analyze the 3D morphologies of organelles, their spatial distributions and distances, and their spatial correlations. We have designed Barrio as a configurable framework that scientists can adjust to their preferred workflow, visualizations, and supported user interactions for their specific tasks and domain questions. Furthermore, Barrio provides a scalable comparative visualization approach for spatial neighborhoods that automatically adjusts visualizations based on the number of structures to be compared. Barrio supports small multiples of spatial 3D views as well as abstract quantitative views, and arranges them in linked and juxtaposed views. To adapt to new domain-specific analysis scenarios, we allow the definition of individualized visualizations and their parameters for each analysis session. We present an in-depth case study for mitochondria analysis in neuronal tissue and demonstrate the usefulness of Barrio in a qualitative user study with neuroscientists.Item Branch Decomposition-Independent Edit Distances for Merge Trees(The Eurographics Association and John Wiley & Sons Ltd., 2022) Wetzels, Florian; Leitte, Heike; Garth, Christoph; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasEdit distances between merge trees of scalar fields have many applications in scientific visualization, such as ensemble analysis, feature tracking or symmetry detection. In this paper, we propose branch mappings, a novel approach to the construction of edit mappings for merge trees. Classic edit mappings match nodes or edges of two trees onto each other, and therefore have to either rely on branch decompositions of both trees or have to use auxiliary node properties to determine a matching. In contrast, branch mappings employ branch properties instead of node similarity information, and are independent of predetermined branch decompositions. Especially for topological features, which are typically based on branch properties, this allows a more intuitive distance measure which is also less susceptible to instabilities from small-scale perturbations. For trees with O(n) nodes, we describe an O(n4) algorithm for computing optimal branch mappings, which is faster than the only other branch decomposition-independent method in the literature by more than a linear factor. Furthermore, we compare the results of our method on synthetic and real-world examples to demonstrate its practicality and utility.Item CorpusVis: Visual Analysis of Digital Sheet Music Collections(The Eurographics Association and John Wiley & Sons Ltd., 2022) Miller, Matthias; Rauscher, Julius; Keim, Daniel A.; El-Assady, Mennatallah; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasManually investigating sheet music collections is challenging for music analysts due to the magnitude and complexity of underlying features, structures, and contextual information. However, applying sophisticated algorithmic methods would require advanced technical expertise that analysts do not necessarily have. Bridging this gap, we contribute CorpusVis, an interactive visual workspace, enabling scalable and multi-faceted analysis. Our proposed visual analytics dashboard provides access to computational methods, generating varying perspectives on the same data. The proposed application uses metadata including composers, type, epoch, and low-level features, such as pitch, melody, and rhythm. To evaluate our approach, we conducted a pair-analytics study with nine participants. The qualitative results show that CorpusVis supports users in performing exploratory and confirmatory analysis, leading them to new insights and findings. In addition, based on three exemplary workflows, we demonstrate how to apply our approach to different tasks, such as exploring musical features or comparing composers.Item DanmuVis: Visualizing Danmu Content Dynamics and Associated Viewer Behaviors in Online Videos(The Eurographics Association and John Wiley & Sons Ltd., 2022) Chen, Shuai; Li, Sihang; Li, Yanda; Zhu, Junlin; Long, Juanjuan; Chen, Siming; Zhang, Jiawan; Yuan, Xiaoru; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasDanmu (Danmaku) is a unique social media service in online videos, especially popular in Japan and China, for viewers to write comments while watching videos. The danmu comments are overlaid on the video screen and synchronized to the associated video time, indicating viewers' thoughts of the video clip. This paper introduces an interactive visualization system to analyze danmu comments and associated viewer behaviors in a collection of videos and enable detailed exploration of one video on demand. The watching behaviors of viewers are identified by comparing video time and post time of viewers' danmu. The system supports analyzing danmu content and viewers' behaviors against both video time and post time to gain insights into viewers' online participation and perceived experience. Our evaluations, including usage scenarios and user interviews, demonstrate the effectiveness and usability of our system.Item Effective Use of Likert Scales in Visualization Evaluations: A Systematic Review(The Eurographics Association and John Wiley & Sons Ltd., 2022) South, Laura; Saffo, David; Vitek, Olga; Dunne, Cody; Borkin, Michelle A.; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasLikert scales are often used in visualization evaluations to produce quantitative estimates of subjective attributes, such as ease of use or aesthetic appeal. However, the methods used to collect, analyze, and visualize data collected with Likert scales are inconsistent among evaluations in visualization papers. In this paper, we examine the use of Likert scales as a tool for measuring subjective response in a systematic review of 134 visualization evaluations published between 2009 and 2019. We find that papers with both objective and subjective measures do not hold the same reporting and analysis standards for both aspects of their evaluation, producing less rigorous work for the subjective qualities measured by Likert scales. Additionally, we demonstrate that many papers are inconsistent in their interpretations of Likert data as discrete or continuous and may even sacrifice statistical power by applying nonparametric tests unnecessarily. Finally, we identify instances where key details about Likert item construction with the potential to bias participant responses are omitted from evaluation methodology reporting, inhibiting the feasibility and reliability of future replication studies. We summarize recommendations from other fields for best practices with Likert data in visualization evaluations, based on the results of our survey.Item EuroVis 2022 CGF 41-3: Frontmatter(The Eurographics Association and John Wiley & Sons Ltd., 2022) Borgo, Rita; Marai, G. Elisabeta; Schreck, Tobias; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasItem Exploring Effects of Ecological Visual Analytics Interfaces on Experts' and Novices' Decision-Making Processes: A Case Study in Air Traffic Control(The Eurographics Association and John Wiley & Sons Ltd., 2022) Zohrevandi, Elmira; Westin, Carl A. L.; Vrotsou, Katerina; Lundberg, Jonas; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasOperational demands in safety-critical systems impose a risk of failure to the operators especially during urgent situations. Operators of safety-critical systems learn to make decisions effectively throughout extensive training programs and many years of experience. In the domain of air traffic control, expensive training with high dropout rates calls for research to enhance novices' ability to detect and resolve conflicts in the airspace. While previous researchers have mostly focused on redesigning training instructions and programs, the current paper explores possible benefits of novel visual representations to improve novices' understanding of the situations as well as their decision-making process. We conduct an experimental evaluation study testing two ecological visual analytics interfaces, developed in a previous study, as support systems to facilitate novice decisionmaking. The main contribution of this paper is threefold. First, we describe the application of an ecological interface design approach to the development of two visual analytics interfaces. Second, we perform a human-in-the-loop experiment with fortyfive novices within a simplified air traffic control simulation environment. Third, by performing an expert-novice comparison we investigate the extent to which effects of the proposed interfaces can be attributed to the subjects' expertise. The results show that the proposed ecological visual analytics interfaces improved novices' understanding of the information about conflicts as well as their problem-solving performance. Further, the results show that the beneficial effects of the proposed interfaces were more attributable to the visual representations than the users' expertise.Item Exploring How Visualization Design and Situatedness Evoke Compassion in the Wild(The Eurographics Association and John Wiley & Sons Ltd., 2022) Morais, Luiz; Andrade, Nazareno; Sousa, Dandara; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasThis work explores how the design and situatedness of data representations affect people's compassion with a case study concerning harassment episodes in a public place. Results contribute to advancing the understanding of how visualizations can evoke emotions and their impact on prosocial behaviors, such as helping people in need. Recent literature examined the effect of different on-screen data representations on emotion or prosociality, but little has been done concerning visualizations shown in a public place - especially a space contextually relevant to the data - or presented through unconventional media formats such as physical marks. We conducted two in-the-wild studies to investigate how different factors affect people's selfreported compassion and intention to donate. We compared three ways of presenting data about the harassment cases: (1) communicating data only verbally; (2) using a printed poster with aggregated information; and (3) using a physicalization with detailed information about each story. We found that the physicalization influenced people to donate more than only hearing about the data, but it is unclear if the same applied to the poster visualization. Also, passers-by reported a likely small increase in compassion when they saw the physicalization instead of the poster. We also examined the role of situatedness by showing the physicalization in a site that is not contextually relevant to the data. Our results suggest that people had a similar intention to donate and levels of compassion in both places. Those findings may indicate that using specific visualization designs to support campaigns about sensitive causes (e.g., sexual harassment) can increase the emotional response of passers-by and may motivate them to help, independently of where the data representation is shown. Finally, this work also informs on the strengths and weaknesses of using research in the wild to evaluate data visualizations in public spaces.Item Exploring Multivariate Event Sequences with an Interactive Similarity Builder(The Eurographics Association and John Wiley & Sons Ltd., 2022) Xu, Shaobin; Sun, Minghui; Zhang, Zhengtai; Xue, Hao; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasSimilarity-based exploration is an effective method in knowledge discovery. Faced with multivariate event sequence data (MVES), developing a satisfactory similarity measurement for a specific question is challenging because of the heterogeneity introduced by numerous attributes with different data formats, coupled with their associations. Additionally, the absence of effective validation feedback makes judging the goodness of a measurement scheme a time-consuming and error-prone procedure. To free analysts from tedious programming to concentrate on the exploration of MVES data, this paper introduces an interactive similarity builder, where analysts can use visual building blocks for assembling similarity measurements in a drag-and-drop and incremental fashion. Based on the builder, we further propose a visual analytics framework that provides multi-granularity visual validations for measurement schemes and supports a recursive workflow for refining the focus set. We illustrate the power of our prototype through a case study and a user study with real-world datasets. Results suggest that the system improves the efficiency of developing similarity measurements and the usefulness of exploring MVES data.Item A Flip-book of Knot Diagrams for Visualizing Surfaces in 4-Space(The Eurographics Association and John Wiley & Sons Ltd., 2022) Liu, Huan; Zhang, Hui; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasJust as 2D shadows of 3D curves lose structure where lines cross, 3D graphics projections of smooth 4D topological surfaces are interrupted where one surface intersects itself. They twist, turn, and fold back on themselves, leaving important but hidden features behind the surface sheets. In this paper, we propose a smart slicing tool that can read the 4D surface in its entropy map and suggest the optimal way to generate cross-sectional images - or ''slices'' - of the surface to visualize its underlying 4D structure. Our visualization thinks of a 4D-embedded surface as a collection of 3D curves stacked in time, very much like a flip-book animation, where successive terms in the sequence differ at most by a critical change. This novel method can generate topologically meaningful visualization to depict complex and unfamiliar 4D surfaces, with the minimum number of cross-sectional diagrams. Our approach has been successfully used to create flip-books of diagrams to visualize a range of known 4D surfaces. In this preliminary study, our results show that the new visualization and slicing tool can help the viewers to understand and describe the complex spatial relationships and overall structures of 4D surfaces.Item A Grammar-Based Approach for Applying Visualization Taxonomies to Interaction Logs(The Eurographics Association and John Wiley & Sons Ltd., 2022) Gathani, Sneha; Monadjemi, Shayan; Ottley, Alvitta; Battle, Leilani; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasResearchers collect large amounts of user interaction data with the goal of mapping user's workflows and behaviors to their high-level motivations, intuitions, and goals. Although the visual analytics community has proposed numerous taxonomies to facilitate this mapping process, no formal methods exist for systematically applying these existing theories to user interaction logs. This paper seeks to bridge the gap between visualization task taxonomies and interaction log data by making the taxonomies more actionable for interaction log analysis. To achieve this, we leverage structural parallels between how people express themselves through interactions and language by reformulating existing theories as regular grammars.We represent interactions as terminals within a regular grammar, similar to the role of individual words in a language, and patterns of interactions or non-terminals as regular expressions over these terminals to capture common language patterns. To demonstrate our approach, we generate regular grammars for seven existing visualization taxonomies and develop code to apply them to three public interaction log datasets. In analyzing these regular grammars, we find that the taxonomies at the low-level (i.e., terminals) show mixed results in expressing multiple interaction log datasets, and taxonomies at the high-level (i.e., regular expressions) have limited expressiveness, due to primarily two challenges: inconsistencies in interaction log dataset granularity and structure, and under-expressiveness of certain terminals. Based on our findings, we suggest new research directions for the visualization community to augment existing taxonomies, develop new ones, and build better interaction log recording processes to facilitate the data-driven development of user behavior taxonomies.Item How Accessible is my Visualization? Evaluating Visualization Accessibility with Chartability(The Eurographics Association and John Wiley & Sons Ltd., 2022) Elavsky, Frank; Bennett, Cynthia; Moritz, Dominik; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasNovices and experts have struggled to evaluate the accessibility of data visualizations because there are no common shared guidelines across environments, platforms, and contexts in which data visualizations are authored. Between non-specific standards bodies like WCAG, emerging research, and guidelines from specific communities of practice, it is hard to organize knowledge on how to evaluate accessible data visualizations. We present Chartability, a set of heuristics synthesized from these various sources which enables designers, developers, researchers, and auditors to evaluate data-driven visualizations and interfaces for visual, motor, vestibular, neurological, and cognitive accessibility. In this paper, we outline our process of making a set of heuristics and accessibility principles for Chartability and highlight key features in the auditing process. Working with participants on real projects, we found that data practitioners with a novice level of accessibility skills were more confident and found auditing to be easier after using Chartability. Expert accessibility practitioners were eager to integrate Chartability into their own work. Reflecting on Chartability's development and the preliminary user evaluation, we discuss tradeoffs of open projects, working with high-risk evaluations like auditing projects in the wild, and challenge future research projects at the intersection of visualization and accessibility to consider the broad intersections of disabilities.Item Hybrid Touch/Tangible Spatial Selection in Augmented Reality(The Eurographics Association and John Wiley & Sons Ltd., 2022) Sereno, Mickael; Gosset, Stéphane; Besançon, Lonni; Isenberg, Tobias; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasWe study tangible touch tablets combined with Augmented Reality Head-Mounted Displays (AR-HMDs) to perform spatial 3D selections. We are primarily interested in the exploration of 3D unstructured datasets such as cloud points or volumetric datasets. AR-HMDs immerse users by showing datasets stereoscopically, and tablets provide a set of 2D exploration tools. Because AR-HMDs merge the visualization, interaction, and the users' physical spaces, users can also use the tablets as tangible objects in their 3D space. Nonetheless, the tablets' touch displays provide their own visualization and interaction spaces, separated from those of the AR-HMD. This raises several research questions compared to traditional setups. In this paper, we theorize, discuss, and study different available mappings for manual spatial selections using a tangible tablet within an AR-HMD space. We then study the use of this tablet within a 3D AR environment, compared to its use with a 2D external screen.Item HyperNP: Interactive Visual Exploration of Multidimensional Projection Hyperparameters(The Eurographics Association and John Wiley & Sons Ltd., 2022) Appleby, Gabriel; Espadoto, Mateus; Chen, Rui; Goree, Samuel; Telea, Alexandru C.; Anderson, Erik W.; Chang, Remco; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasProjection algorithms such as t-SNE or UMAP are useful for the visualization of high dimensional data, but depend on hyperparameters which must be tuned carefully. Unfortunately, iteratively recomputing projections to find the optimal hyperparameter values is computationally intensive and unintuitive due to the stochastic nature of such methods. In this paper we propose HyperNP, a scalable method that allows for real-time interactive hyperparameter exploration of projection methods by training neural network approximations. A HyperNP model can be trained on a fraction of the total data instances and hyperparameter configurations that one would like to investigate and can compute projections for new data and hyperparameters at interactive speeds. HyperNP models are compact in size and fast to compute, thus allowing them to be embedded in lightweight visualization systems. We evaluate the performance of HyperNP across three datasets in terms of performance and speed. The results suggest that HyperNP models are accurate, scalable, interactive, and appropriate for use in real-world settings.Item Infographics Wizard: Flexible Infographics Authoring and Design Exploration(The Eurographics Association and John Wiley & Sons Ltd., 2022) Tyagi, Anjul; Zhao, Jian; Patel, Pushkar; Khurana, Swasti; Mueller, Klaus; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasInfographics are an aesthetic visual representation of information following specific design principles of human perception. Designing infographics can be a tedious process for non-experts and time-consuming, even for professional designers. With the help of designers, we propose a semi-automated infographic framework for general structured and flow-based infographic design generation. For novice designers, our framework automatically creates and ranks infographic designs for a user-provided text with no requirement for design input. However, expert designers can still provide custom design inputs to customize the infographics. We will also contribute an individual visual group (VG) designs dataset (in SVG), along with a 1k complete infographic image dataset with segmented VGs in this work. Evaluation results confirm that by using our framework, designers from all expertise levels can generate generic infographic designs faster than existing methods while maintaining the same quality as hand-designed infographics templates.Item An Interactive Approach for Identifying Structure Definitions(The Eurographics Association and John Wiley & Sons Ltd., 2022) Mikula, Natalia; Dörffel, Tom; Baum, Daniel; Hege, Hans-Christian; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasOur ability to grasp and understand complex phenomena is essentially based on recognizing structures and relating these to each other. For example, any meteorological description of a weather condition and explanation of its evolution recurs to meteorological structures, such as convection and circulation structures, cloud fields and rain fronts. All of these are spatiotemporal structures, defined by time-dependent patterns in the underlying fields. Typically, such a structure is defined by a verbal description that corresponds to the more or less uniform, often somewhat vague mental images of the experts. However, a precise, formal definition of the structures or, more generally, of the concepts is often desirable, e.g., to enable automated data analysis or the development of phenomenological models. Here, we present a systematic approach and an interactive tool to obtain formal definitions of spatiotemporal structures. The tool enables experts to evaluate and compare different structure definitions on the basis of data sets with time-dependent fields that contain the respective structure. Since structure definitions are typically parameterized, an essential part is to identify parameter ranges that lead to desired structures in all time steps. In addition, it is important to allow a quantitative assessment of the resulting structures simultaneously. We demonstrate the use of the tool by applying it to two meteorological examples: finding structure definitions for vortex cores and center lines of temporarily evolving tropical cyclones. Ideally, structure definitions should be objective and applicable to as many data sets as possible. However, finding such definitions, e.g., for the common atmospheric structures in meteorology, can only be a long-term goal. The proposed procedure, together with the presented tool, is just a first systematic approach aiming at facilitating this long and arduous way.Item Interactively Assessing Disentanglement in GANs(The Eurographics Association and John Wiley & Sons Ltd., 2022) Jeong, Sangwon; Liu, Shusen; Berger, Matthew; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasGenerative adversarial networks (GAN) have witnessed tremendous growth in recent years, demonstrating wide applicability in many domains. However, GANs remain notoriously difficult for people to interpret, particularly for modern GANs capable of generating photo-realistic imagery. In this work we contribute a visual analytics approach for GAN interpretability, where we focus on the analysis and visualization of GAN disentanglement. Disentanglement is concerned with the ability to control content produced by a GAN along a small number of distinct, yet semantic, factors of variation. The goal of our approach is to shed insight on GAN disentanglement, above and beyond coarse summaries, instead permitting a deeper analysis of the data distribution modeled by a GAN. Our visualization allows one to assess a single factor of variation in terms of groupings and trends in the data distribution, where our analysis seeks to relate the learned representation space of GANs with attribute-based semantic scoring of images produced by GANs. Through use-cases, we show that our visualization is effective in assessing disentanglement, allowing one to quickly recognize a factor of variation and its overall quality. In addition, we show how our approach can highlight potential dataset biases learned by GANs.Item Investigating the Role and Interplay of Narrations and Animations in Data Videos(The Eurographics Association and John Wiley & Sons Ltd., 2022) Cheng, Hao; Wang, Junhong; Wang, Yun; Lee, Bongshin; Zhang, Haidong; Zhang, Dongmei; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasCombining data visualizations, animations, and audio narrations, data videos can increase viewer engagement and effectively communicate data stories. Due to their increasing popularity, data videos have gained growing attention from the visualization research community. However, recent research on data videos has focused on animations, lacking an understanding of narrations. In this work, we study how data videos use narrations and animations to convey information effectively. We conduct a qualitative analysis on 426 clips with visualizations extracted from 60 data videos collected from a variety of media outlets, covering a diverse array of topics. We manually label 816 sentences with 1226 semantic labels and record the composition of 2553 animations through an open coding process. We also analyze how narrations and animations coordinate with each other by assigning links between semantic labels and animations. With 937 (76.4%) semantic labels and 2503 (98.0%) animations linked, we identify four types of narration-animation relationships in the collected clips. Drawing from the findings, we discuss study implications and future research opportunities of data videos.Item Level of Detail Exploration of Electronic Transition Ensembles using Hierarchical Clustering(The Eurographics Association and John Wiley & Sons Ltd., 2022) Sidwall Thygesen, Signe; Masood, Talha Bin; Linares, Mathieu; Natarajan, Vijay; Hotz, Ingrid; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasWe present a pipeline for the interactive visual analysis and exploration of molecular electronic transition ensembles. Each ensemble member is specified by a molecular configuration, the charge transfer between two molecular states, and a set of physical properties. The pipeline is targeted towards theoretical chemists, supporting them in comparing and characterizing electronic transitions by combining automatic and interactive visual analysis. A quantitative feature vector characterizing the electron charge transfer serves as the basis for hierarchical clustering as well as for the visual representations. The interface for the visual exploration consists of four components. A dendrogram provides an overview of the ensemble. It is augmented with a level of detail glyph for each cluster. A scatterplot using dimensionality reduction provides a second visualization, highlighting ensemble outliers. Parallel coordinates show the correlation with physical parameters. A spatial representation of selected ensemble members supports an in-depth inspection of transitions in a form that is familiar to chemists. All views are linked and can be used to filter and select ensemble members. The usefulness of the pipeline is shown in three different case studies.