32-Issue 2
Permanent URI for this collection
Browse
Browsing 32-Issue 2 by Issue Date
Now showing 1 - 20 of 53
Results Per Page
Sort Options
Item Preface and Table of Contents(The Eurographics Association and Blackwell Publishing Ltd., 2013) I. Navazo, P. PoulinItem Computing and Fabricating Multiplanar Models(The Eurographics Association and Blackwell Publishing Ltd., 2013) Chen, Desai; Sitthi-amorn, Pitchaya; Lan, Justin T.; Matusik, Wojciech; I. Navazo, P. PoulinWe present a method for converting computer 3D models into physical equivalents. More specifically, we address the problem of approximating a 3D textured mesh using a small number of planar polygonal primitives that form a closed surface. This simplified representation allows us to easily manufacture individual components using computer controlled cutters (e.g., laser cutters or CNC machines). These polygonal pieces can be assembled into the final 3D model using internal planar connectors that are manufactured simultaneously. Our shape approximation algorithm iteratively assigns mesh faces to planar segments and slowly deforms these faces towards corresponding segments. This approach ensures that the output for a given closed mesh is still a closed mesh and avoids introducing self-intersections. After this step we also compute the shape of polygonal connectors that internally hold the whole mesh surface. Both the polygonal surface elements and connectors can be manufactured in a single cutting pass. We validate the use of our method by computing and manufacturing a variety of textured polyhedral models.Item A Correlated Parts Model for Object Detection in Large 3D Scans(The Eurographics Association and Blackwell Publishing Ltd., 2013) Sunkel, Martin; Jansen, Silke; Wand, Michael; Seidel, Hans-Peter; I. Navazo, P. PoulinThis paper addresses the problem of detecting objects in 3D scans according to object classes learned from sparse user annotation. We model objects belonging to a class by a set of fully correlated parts, encoding dependencies between local shapes of different parts as well as their relative spatial arrangement. For an efficient and comprehensive retrieval of instances belonging to a class of interest, we introduce a new approximate inference scheme and a corresponding planning procedure. We extend our technique to hierarchical composite structures, reducing training effort and modeling spatial relations between detected instances. We evaluate our method on a number of real-world 3D scans and demonstrate its benefits as well as the performance of the new inference algorithm.Item By-example Synthesis of Curvilinear Structured Patterns(The Eurographics Association and Blackwell Publishing Ltd., 2013) Zhou, Shizhe; Lasram, Anass; Lefebvre, Sylvain; I. Navazo, P. PoulinMany algorithms in Computer Graphics require to synthesize a pattern along a curve. This is for instance the case with line stylization, to decorate objects with elaborate patterns (chains, laces, scratches), or to synthesize curvilinear features such as mountain ridges, rivers or roads. We describe a simple yet effective method for this problem. Our method addresses the main challenge of maintaining the continuity of the pattern while following the curve. It allows some freedom to the synthesized pattern: It may locally diverge from the curve so as to allow for a more natural global result. This also lets the pattern escape areas of overlaps or fold-overs. This makes our method particularly well suited to structured, detailed patterns following complex curves. Our synthesizer copies tilted pieces of the exemplar along the curve, following its orientation. The result is optimized through a shortest path search, with dynamic programming. We speed up the process by an efficient parallel implementation. Finally, since discontinuities may always remain we propose an optional post-processing step optimally deforming neighboring pieces to smooth the transitions.Item Exploring Local Modifications for Constrained Meshes(The Eurographics Association and Blackwell Publishing Ltd., 2013) Deng, Bailin; Bouaziz, Sofien; Deuss, Mario; Zhang, Juyong; Schwartzburg, Yuliy; Pauly, Mark; I. Navazo, P. PoulinMesh editing under constraints is a challenging task with numerous applications in geometric modeling, industrial design, and architectural form finding. Recent methods support constraint-based exploration of meshes with fixed connectivity, but commonly lack local control. Because constraints are often globally coupled, a local modification by the user can have global effects on the surface, making iterative design exploration and refinement difficult. Simply fixing a local region of interest a priori is problematic, as it is not clear in advance which parts of the mesh need to be modified to obtain an aesthetically pleasing solution that satisfies all constraints. We propose a novel framework for exploring local modifications of constrained meshes. Our solution consists of three steps. First, a user specifies target positions for one or more vertices. Our algorithm computes a sparse set of displacement vectors that satisfies the constraints and yields a smooth deformation. Then we build a linear subspace to allow realtime exploration of local variations that satisfy the constraints approximately. Finally, after interactive exploration, the result is optimized to fully satisfy the set of constraints. We evaluate our framework on meshes where each face is constrained to be planar.Item Sifted Disks(The Eurographics Association and Blackwell Publishing Ltd., 2013) Ebeida, Mohamed S.; Mahmoud, Ahmed H.; Awad, Muhammad A.; Mohammed, Mohammed A.; Mitchell, Scott A.; Rand, Alexander; Owens, John D.; I. Navazo, P. PoulinWe introduce the Sifted Disk technique for locally resampling a point cloud in order to reduce the number of points. Two neighboring points are removed and we attempt to find a single random point that is sufficient to replace them both. The resampling respects the original sizing function; In that sense it is not a coarsening. The angle and edge length guarantees of a Delaunay triangulation of the points are preserved. The sifted point cloud is still suitable for texture synthesis because the Fourier spectrum is largely unchanged. We provide an efficient algorithm, and demonstrate that sifting uniform Maximal Poisson-disk Sampling (MPS) and Delaunay Refinement (DR) points reduces the number of points by about 25 percent, and achieves a density about 1/3 more than the theoretical minimum. We show two-dimensional stippling and meshing applications to demonstrate the significance of the concept.Item Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces(The Eurographics Association and Blackwell Publishing Ltd., 2013) Kurtek, Sebastian; Srivastava, Anuj; Klassen, Eric; Laga, Hamid; I. Navazo, P. PoulinWe argue that full surface correspondence (registration) and optimal deformations (geodesics) are two related problems and propose a framework that solves them simultaneously. We build on the Riemannian shape analysis of anatomical and star-shaped surfaces of Kurtek et al. and focus on articulated complex shapes that undergo elastic deformations and that may contain missing parts. Our core contribution is the re-formulation of Kurtek et al.'s approach as a constrained optimization over all possible re-parameterizations of the surfaces, using a sparse set of corresponding landmarks. We introduce a landmark-constrained basis, which we use to numerically solve this optimization and therefore establish full surface registration and geodesic deformation between two surfaces. The length of the geodesic provides a measure of dissimilarity between surfaces. The advantages of this approach are: (1) simultaneous computation of full correspondence and geodesic between two surfaces, given a sparse set of matching landmarks (2) ability to handle more comprehensive deformations than nearly isometric, and (3) the geodesics and the geodesic lengths can be further used for symmetrizing 3D shapes and for computing their statistical averages. We validate the framework on challenging cases of large isometric and elastic deformations, and on surfaces with missing parts. We also provide multiple examples of averaging and symmetrizing 3D models.Item Measurement-Based Synthesis of Facial Microgeometry(The Eurographics Association and Blackwell Publishing Ltd., 2013) Graham, Paul; Tunwattanapong, Borom; Busch, Jay; Yu, Xueming; Jones, Andrew; Debevec, Paul; Ghosh, Abhijeet; I. Navazo, P. PoulinWe present a technique for generating microstructure-level facial geometry by augmenting a mesostructure-level facial scan with detail synthesized from a set of exemplar skin patches scanned at much higher resolution. Additionally, we make point-source reflectance measurements of the skin patches to characterize the specular reflectance lobes at this smaller scale and analyze facial reflectance variation at both the mesostructure and microstructure scales. We digitize the exemplar patches with a polarization-based computational illumination technique which considers specular reflection and single scattering. The recorded microstructure patches can be used to synthesize full-facial microstructure detail for either the same subject or to a different subject. We show that the technique allows for greater realism in facial renderings including more accurate reproduction of skin's specular reflection effects.Item DuctTake: Spatiotemporal Video Compositing(The Eurographics Association and Blackwell Publishing Ltd., 2013) Rüegg, Jan; Wang, Oliver; Smolic, Aljoscha; Gross, Markus; I. Navazo, P. PoulinDuctTake is a system designed to enable practical compositing of multiple takes of a scene into a single video. Current industry solutions are based around object segmentation, a hard problem that requires extensive manual input and cleanup, making compositing an expensive part of the film-making process. Our method instead composites shots together by finding optimal spatiotemporal seams using motion-compensated 3D graph cuts through the video volume. We describe in detail the required components, decisions, and new techniques that together make a usable, interactive tool for compositing HD video, paying special attention to running time and performance of each section. We validate our approach by presenting a wide variety of examples and by comparing result quality and creation time to composites made by professional artists using current state-of-the-art tools.Item Primitive Trees for Precomputed Distance Queries(The Eurographics Association and Blackwell Publishing Ltd., 2013) Lee, Sung-Ho; Park, Taejung; Kim, Chang-Hun; I. Navazo, P. PoulinWe propose the primitive tree, a novel and compact space-partition method that samples and reconstructs a distance field with high accuracy, even for regions far from the surfaces. The primitive tree is based on the octree and stores the indices of the nearest primitives in its leaf nodes. Most previous approaches have involved a trade-off between accuracy and speed in distance queries, but our method can improve both aspects simultaneously. In addition, our method can sample unsigned distance fields effectively, even for self-intersecting and nonmanifold models. We present test results showing that our method can sample and represent large scenes, with more than ten million triangles, rapidly and accurately.Item Surface Reconstruction through Point Set Structuring(The Eurographics Association and Blackwell Publishing Ltd., 2013) Lafarge, Florent; Alliez, Pierre; I. Navazo, P. PoulinWe present a method for reconstructing surfaces from point sets. The main novelty lies in a structure-preserving approach where the input point set is first consolidated by structuring and resampling the planar components, before reconstructing the surface from both the consolidated components and the unstructured points. The final surface is obtained through solving a graph-cut problem formulated on the 3D Delaunay triangulation of the structured point set where the tetrahedra are labeled as inside or outside cells. Structuring facilitates the surface reconstruction as the point set is substantially reduced and the points are enriched with structural meaning related to adjacency between primitives. Our approach departs from the common dichotomy between smooth/piecewisesmooth and primitive-based representations by gracefully combining canonical parts from detected primitives and free-form parts of the inferred shape. Our experiments on a variety of inputs illustrate the potential of our approach in terms of robustness, flexibility and efficiency.Item Circular Arc Snakes and Kinematic Surface Generation(The Eurographics Association and Blackwell Publishing Ltd., 2013) Barton, Michael; Shi, Ling; Kilian, Martin; Wallner, Johannes; Pottmann, Helmut; I. Navazo, P. PoulinWe discuss the theory, discretization, and numerics of curves which are evolving such that part of their shape, or at least their curvature as a function of arc length, remains unchanged. The discretization of a curve as a smooth sequence of circular arcs is well suited for such purposes, and allows us to reduce evolution of curves to the evolution of a control point collection in a certain finite-dimensional shape space. We approach this evolution by a 2-step process: linearized evolution via optimized velocity fields, followed by optimization in order to exactly fulfill all geometric side conditions. We give applications to freeform architecture, including ''rationalization'' of a surface by congruent arcs, form finding and, most interestingly, non-static architecture.Item ArtiSketch: A System for Articulated Sketch Modeling(The Eurographics Association and Blackwell Publishing Ltd., 2013) Levi, Zohar; Gotsman, Craig; I. Navazo, P. PoulinWe present ArtiSketch - a system which allows the conversion of a wealth of existing 2D content into 3D content by users who do not necessarily possess artistic skills. Using ArtiSketch, a novice user may describe a 3D model as a set of articulated 2D sketches of a shape from different viewpoints. ArtiSketch then automatically converts the sketches to an articulated 3D object. Using common interactive tools, the user provides an initial estimate of the 3D skeleton pose for each frame, which ArtiSketch refines to be consistent between frames. This skeleton may then be manipulated independently to generate novel poses of the 3D model.Item Animal Locomotion Controllers From Scratch(The Eurographics Association and Blackwell Publishing Ltd., 2013) Wampler, Kevin; Popovic, Jovan; Popovic, Zoran; I. Navazo, P. PoulinThere exists a large body of research devoted to creating real time interactive locomotion controllers which are targeted at some specific class of character, most often humanoid bipeds. Relatively little work, however, has been done on approaches which are applicable to creatures with a wide range of different forms - partially due to the lack of easily obtainable motion-capture data for animals and fictional creatures. We show how a locomotion controller can be created despite this dearth of data by synthesizing it from scratch. Our method only requires as input a description of the shape of the animal, the gaits which it can perform, and a model of the task or tasks for which the controller will be used. From this a sequence of motion clips are automatically synthesized and assembled into a motion graph which defines a physically realistic controller capable of performing the specified tasks. The method attempts to minimize the computational time required to generate this controller and we show its effectiveness at creating interactive controllers for a range of tasks for bipeds, tripeds, and quadrupeds.Item Sparse Modeling of Intrinsic Correspondences(The Eurographics Association and Blackwell Publishing Ltd., 2013) Pokrass, Jonathan; Bronstein, Alexander M.; Bronstein, Michael M.; Sprechmann, Pablo; Sapiro, Guillermo; I. Navazo, P. PoulinWe present a novel sparse modeling approach to non-rigid shape matching using only the ability to detect repeatable regions. As the input to our algorithm, we are given only two sets of regions in two shapes; no descriptors are provided so the correspondence between the regions is not know, nor we know how many regions correspond in the two shapes. We show that even with such scarce information, it is possible to establish very accurate correspondence between the shapes by using methods from the field of sparse modeling, being this, the first non-trivial use of sparse models in shape correspondence. We formulate the problem of permuted sparse coding, in which we solve simultaneously for an unknown permutation ordering the regions on two shapes and for an unknown correspondence in functional representation. We also propose a robust variant capable of handling incomplete matches. Numerically, the problem is solved efficiently by alternating the solution of a linear assignment and a sparse coding problem. The proposed methods are evaluated qualitatively and quantitatively on standard benchmarks containing both synthetic and scanned objects.Item Path Space Regularization for Holistic and Robust Light Transport(The Eurographics Association and Blackwell Publishing Ltd., 2013) Kaplanyan, Anton S.; Dachsbacher, Carsten; I. Navazo, P. PoulinWe propose a simple yet powerful regularization framework for robust light transport simulation. It builds on top of existing unbiased methods and resorts to a consistent estimation using regularization only for paths which cannot be sampled in an unbiased way. To introduce as little bias as possible, we selectively regularize individual interactions along paths, and also derive the regularization consistency conditions. Our approach is compatible with the majority of unbiased methods, e.g. (bidirectional) path tracing and Metropolis light transport (MLT), and only a simple modification is required to adapt existing renderers. We compare to recent unbiased and consistent methods and show examples of scenes with difficult light paths, where regularization is required to account for all illumination features. When coupled with MLT we are able to sample all phenomena, like recent consistent methods, while achieving superior convergence.Item Adaptive Quantization Visibility Caching(The Eurographics Association and Blackwell Publishing Ltd., 2013) Popov, Stefan; Georgiev, Iliyan; Slusallek, Philipp; Dachsbacher, Carsten; I. Navazo, P. PoulinRay tracing has become a viable alternative to rasterization for interactive applications and also forms the basis of most global illumination methods. However, even today's fastest ray-tracers offer only a tight budget of rays per pixel per frame. Rendering performance can be improved by increasing this budget, or by developing methods that use it more efficiently. In this paper we propose a global visibility caching algorithm that reduces the number of shadow rays required for shading to a fraction of less than 2% in some cases. We quantize the visibility function's domain while ensuring a minimal degradation of the final image quality. To control the introduced error, we adapt the quantization locally, accounting for variations in geometry, sampling densities on both endpoints of the visibility queries, and the light signal itself. Compared to previous approaches for approximating visibility, e.g. shadow mapping, our method has several advantages: (1) it allows caching of arbitrary visibility queries between surface points and is thus applicable to all ray tracing based methods; (2) the approximation error is uniform over the entire image and can be bounded by a user-specified parameter; (3) the cache is created on-the-fly and does not waste any resources on queries that will never be used. We demonstrate the benefits of our method on Whitted-style ray tracing combined with instant radiosity, as well as an integration with bidirectional path tracing.Item Coupled Quasi-harmonic Bases(The Eurographics Association and Blackwell Publishing Ltd., 2013) Kovnatsky, Artiom; Bronstein, Michael M.; Bronstein, Alexander M.; Glashoff, Klaus; Kimmel, Ron; I. Navazo, P. PoulinThe use of Laplacian eigenbases has been shown to be fruitful in many computer graphics applications. Today, state-of-the-art approaches to shape analysis, synthesis, and correspondence rely on these natural harmonic bases that allow using classical tools from harmonic analysis on manifolds. However, many applications involving multiple shapes are obstacled by the fact that Laplacian eigenbases computed independently on different shapes are often incompatible with each other. In this paper, we propose the construction of common approximate eigenbases for multiple shapes using approximate joint diagonalization algorithms, taking as input a set of corresponding functions (e.g. indicator functions of stable regions) on the two shapes. We illustrate the benefits of the proposed approach on tasks from shape editing, pose transfer, correspondence, and similarity.Item Interactive Facades - Analysis and Synthesis of Semi-Regular Facades(The Eurographics Association and Blackwell Publishing Ltd., 2013) AlHalawani, Sawsan; Yang, Yong-Liang; Liu, Han; Mitra, Niloy J.; I. Navazo, P. PoulinUrban facades regularly contain interesting variations due to allowed deformations of repeated elements (e.g., windows in different open or close positions) posing challenges to state-of-the-art facade analysis algorithms. We propose a semi-automatic framework to recover both repetition patterns of the elements and their individual deformation parameters to produce a factored facade representation. Such a representation enables a range of applications including interactive facade images, improved multi-view stereo reconstruction, facade-level change detection, and novel image editing possibilities.Item Analytic Visibility on the GPU(The Eurographics Association and Blackwell Publishing Ltd., 2013) Auzinger, Thomas; Wimmer, Michael; Jeschke, Stefan; I. Navazo, P. PoulinThis paper presents a parallel, implementation-friendly analytic visibility method for triangular meshes. Together with an analytic filter convolution, it allows for a fully analytic solution to anti-aliased 3D mesh rendering on parallel hardware. Building on recent works in computational geometry, we present a new edge-triangle intersection algorithm and a novel method to complete the boundaries of all visible triangle regions after a hidden line elimination step. All stages of the method are embarrassingly parallel and easily implementable on parallel hardware. A GPU implementation is discussed and performance characteristics of the method are shown and compared to traditional sampling-based rendering methods.