MolVa: Workshop on Molecular Graphics and Visual Analysis of Molecular Data
Permanent URI for this community
Browse
Browsing MolVa: Workshop on Molecular Graphics and Visual Analysis of Molecular Data by Issue Date
Now showing 1 - 19 of 19
Results Per Page
Sort Options
Item Atomic Accessibility Radii for Molecular Dynamics Analysis(The Eurographics Association, 2018) Lindow, Norbert; Baum, Daniel; Hege, Hans-Christian; Jan Byska and Michael Krone and Björn SommerIn molecular structure analysis and visualization, the molecule's atoms are often modeled as hard spheres parametrized by their positions and radii. While the atom positions result from experiments or molecular simulations, for the radii typically values are taken from literature. Most often, van der Waals (vdW) radii are used, for which diverse values exist. As a consequence, different visualization and analysis tools use different atomic radii, and the analyses are less objective than often believed. Furthermore, for the geometric accessibility analysis of molecular structures, vdW radii are not well suited. The reason is that during the molecular dynamics simulation, depending on the force field and the kinetic energy in the system, non-bonded atoms can come so close to each other that their vdW spheres intersect. In this paper, we introduce a new kind of atomic radius, called 'atomic accessibility radius', that better characterizes the accessibility of an atom in a given molecular trajectory. The new radii reflect the movement possibilities of atoms in the simulated physical system. They are computed by solving a linear program that maximizes the radii of the atoms under the constraint that non-bonded spheres do not intersect in the considered molecular trajectory. Using this data-driven approach, the actual accessibility of atoms can be visualized more precisely.Item VIA-MD: Visual Interactive Analysis of Molecular Dynamics(The Eurographics Association, 2018) Skånberg, Robin; Linares, Mathieu; König, Carolin; Norman, Patrick; Jönsson, Daniel; Hotz, Ingrid; Ynnerman, Anders; Jan Byska and Michael Krone and Björn SommerWe present a visual exploration environment tailored for large-scale spatio-temporal molecular dynamics simulation data. The environment is referred to as VIA-MD (visual interactive analysis of molecular dynamics) and has been developed in a participatory design process with domain experts on molecular dynamics simulations of complex molecular systems. A key feature of our approach is the support for linked interactive 3D exploration of geometry and statistical analysis using dynamic temporal windowing and animation. Based on semantic level descriptions and hierarchical aggregation of molecular properties we enable interactive filtering, which enables the user to effectively find spatial, temporal and statistical patterns. The VIA-MD environment provides an unprecedented tool for analysis of complex microscopic interactions hidden in large data volumes. We demonstrate the utility of the VIA-MD environment with four use cases. The first two deal with simulation of amyloid plaque associated with development of Alzheimer's, and we study an aqueous solution of 100 probes and an amyloid fibril. The identification of interaction "hotspots" is achieved with the use of combined filter parameters connected with probe molecular planarity and probe-fibril interaction energetics. The third and fourth examples show the wide applicability of the environment by applying it to analysis of molecular properties in material design.Item An Accelerated Online PCA with O(1) Complexity for Learning Molecular Dynamics Data(The Eurographics Association, 2018) Alakkari, Salaheddin; Dingliana, John; Jan Byska and Michael Krone and Björn SommerIn this paper, we discuss the problem of decomposing complex and large Molecular Dynamics trajectory data into simple low-resolution representation using Principal Component Analysis (PCA). Since applying standard PCA for such large data is expensive in terms of space and time complexity, we propose a novel online PCA algorithm with O(1) complexity per new timestep. Our approach is able to approximate the full dimensional eigenspace per new time-step of MD simulation. Experimental results indicate that our technique provides an effective approximation to the original eigenspace computed using standard PCA in batch mode.Item Mol*: Towards a Common Library and Tools for Web Molecular Graphics(The Eurographics Association, 2018) Sehnal, David; Rose, Alexander; Koca, Jaroslav; Burley, Stephen; Velankar, Sameer; Jan Byska and Michael Krone and Björn SommerAdvances in experimental techniques are providing access to structures of ever more complex and larger macromolecular systems. Web-browser based visualization and analysis of macromolecular structures and associated data represents a crucial step in gaining knowledge from these data. A common library and a set of tools for working with such macromolecular data sets would streamline this step. We present a project called Mol* (/'mol-star/) whose goal is to provide a common library and a set of tools for macromolecular data visualization and analysis. The project includes modules for data storage, in-memory representation, query language, UI state management, and visualization; and tools for efficient data access.Item MolVA 2018: Frontmatter(The Eurographics Association, 2018) Byška, Jan; Krone, Michael; Sommer, Björn; Jan Byska and Michael Krone and Björn SommerItem MolVa 2019: Frontmatter(The Eurographics Association, 2019) Byska, Jan; Krone, Michael; Sommer, Björn; Byska, Jan and Krone, Michael and Sommer, BjörnItem MolFind - Integrated Multi-Selection Schemes for Complex Molecular Structures(The Eurographics Association, 2019) Skånberg, Robin; Linares, Mathieu; Falk, Martin; Hotz, Ingrid; Ynnerman, Anders; Byska, Jan and Krone, Michael and Sommer, BjörnSelecting components and observing changes of properties and configurations over time is an important step in the analysis of molecular dynamics (MD) data. In this paper, we present a selection tool combining text-based queries with spatial selection and filtering. Morphological operations facilitate refinement of the selection by growth operators, e.g. across covalent bonds. The combination of different selection paradigms enables flexible and intuitive analysis on different levels of detail and visual depiction of molecular events. Immediate visual feedback during interactions ensures a smooth exploration of the data. We demonstrate the utility of our selection framework by analyzing temporal changes in the secondary structure of poly-alanine and the binding of aspirin to phospholipase A2.Item QuickSES: A Library for Fast Computation of Solvent Excluded Surfaces(The Eurographics Association, 2019) Martinez, Xavier; Krone, Michael; Baaden, Marc; Byska, Jan and Krone, Michael and Sommer, BjörnRecently, several fast methods to compute Solvent Excluded Surfaces (SES) on GPUs have been presented. While these published methods reportedly yield interesting and useful results, up to now no public, freely accessible implementation of a fast and opensource SES mesh computation method that runs on GPUs is available. Most molecular viewers, therefore, still use legacy CPU methods that run only on a single core, without GPU acceleration. In this paper, we present an in-depth explanation and a fully open-source CUDA implementation of the fast, grid-based computation method proposed by Hermosilla et al. [HKG*17]. Our library called QuickSES runs on GPUs and is distributed with a permissive license. It comes with a standalone program that reads Protein Data Bank (PDB) files and outputs a complete SES mesh as a Wavefront OBJ file. Alternatively it can directly be integrated in classical molecular viewers as shared library. We demonstrate the low memory consumption to enable execution on lower-end GPUs, and compare the runtime speed-up to available state-of-the-art tools.Item A Massively Parallel CUDA Algorithm to Compute and Visualize the Solvent Excluded Surface for Dynamic Molecular Data(The Eurographics Association, 2019) Schäfer, Marco; Krone, Michael; Byska, Jan and Krone, Michael and Sommer, BjörnThe interactive visualization of molecular surfaces can help users to understand the dynamic behavior of proteins in molecular dynamics simulations. These simulations play an important role in biochemical and pharmaceutical research, e.g. in drug design. The efficient calculation of molecular surfaces in a fast and memory-saving way is a challenging task. For example, to gain a detailed understanding of complex diseases like Alzheimer, conformational changes and spatial interactions between molecules have to be investigated. Molecular surfaces, such as Solvent Excluded Surfaces (SES), are instrumental for identifying structures such as tunnels or cavities that critically influence transport processes and docking events, which might induce enzymatic reactions. Therefore, we developed a highly parallelized algorithm that exploits the massive computing power of modern graphics hardware. Our analytical algorithm is suitable for the real-time computation of dynamic SES based on many time steps, as it runs interactively on a single consumer GPU for more than 20 k atoms.Item PBmapclust: Mapping and Clustering the Protein Conformational Space Using a Structural Alphabet(The Eurographics Association, 2019) Vetrivel, Iyanar; Hoffmann, Lionel; Guegan, Sean; Offmann, Bernard; Laurent, Adele D.; Byska, Jan and Krone, Michael and Sommer, BjörnAnalyzing the data from molecular dynamics simulation of biological macromolecules like proteins is challenging. We propose a simple tool called PBmapclust that is based on a well established structural alphabet called Protein blocks (PB). PBs help in tracing the trajectory of the protein backbone by categorizing it into 16 distinct structural states. PBmapclust provides a time vs. amino acid residue plot that is color coded to match each of the PBs. Color changes correspond to structural changes, giving a visual overview of the simulation. Further, PBmapclust enables the user to "map" the conformational space sampled by the protein during the MD simulation by clustering the conformations. The ability to generate sub-maps for specific residues and specific time intervals allows the user to focus on residues of interest like for active sites or disordered regions. We have included an illustrative case study to demonstrate the utility of the tool. It describes the effect of the disordered domain of a HSP90 co-chaperone on the conformation of its active site residues. The scripts required to perform PBmapclust are made freely available under the GNU general public license.Item Improved Umbrella Visualization implemented in UnityMol gives valuable insight on sugar/protein interplay(The Eurographics Association, 2020) Besançon, Camille; Wong, Hua; Rao, Rajas; Dauchez, Manuel; Belloy, Nicolas; Prévoteau-Jonquet, Jessica; Baud, Stéphanie; Byška, Jan and Krone, Michael and Sommer, BjörnAmong the various post-translational modifications, N-glycosylations are particularly important. They are linked to asparagine residues and their function as well as the one of the protein can be altered by modifications such as sialic acid hydrolysis. Since in vitro studies of N-glycans can be a challenging process (glycosylation chains have a great diversity and contain many reactive groups), in silico characterization using molecular dynamics simulation seems to be a good tool capable of overcoming experimental shortcomings thanks to exhaustive conformational samplings. In this paper, the Umbrella Visualization, a recent implementation into the molecular viewer UnityMol, is presented. This new and original visualization method is offering the possibility to follow and decipher the dynamics of very flexible sugar chains and enable the identification of the protein surface covered and potentially impacted by glycans. The latest module, described here and integrated within the Umbrella Visualization, complements the original statistical approach and allows for a meaningful description of glycan/protein interplay by combining, with shadow mapping, labelling, and hydrophobic properties of the surrounding aminoacids.Item The Vesicle Builder - A Membrane Packing Algorithm for the CELLmicrocosmos MembraneEditor(The Eurographics Association, 2020) Giuliari, Beatrice; Kösters, Manuel; Zhou, Jan; Dingersen, Tim; Heissmann, André; Rotzoll, Ralf; Krüger, Jens; Giorgetti, Alejandro; Sommer, Björn; Byška, Jan and Krone, Michael and Sommer, BjörnFor a long time, the major focus of membrane simulations was laid on rectangular membrane patches based on the fluid mosaic model. Because of the computational performance of today's computer hardware, it is now possible to generate and simulate larger structures, such as vesicles or micelles. Yet, there are no approaches available to generate these partly complex structures in a convenient and interactive way using WYSIWYG methods and exporting it to PDB format. The CELLmicrocosmos 2.2 MembraneEditor was originally developed for the interactive computation of heterogeneous rectangular membrane patches, solving 2.5D packing problems. Now, its packing capabilities were extended into the third dimension by introducing the Vesicle Builder which is optimized for the computation of vesicular mono- or bilayer membranes. The shape computation is based on an ellipsoid formula enabling the generation of vesicles featuring different lipid compositions, shapes and sizes. More complex shapes can be generated by combining different shapes. Moreover, extended shape customization is possible by modifying and extending the algorithm. Three application cases are discussed: 1) Different potential vesicular configurations including wavy, ellipsoid, enclosing and modular structures are modelled and shortly discussed; 2) To evaluate the compatibility of the Vesicle Builder with simulation tools, a three-component vesicle was modelled and successfully simulated. 3) To show the capability to generate large structures, a vesicle with a radius of 370 Å was generated, consisting of approx. 50,000 lipids and 2 million atoms, respectively. The MembraneEditor as well as the Vesicle Builder plugin can be downloaded from https://Cm2.CELLmicrocosmos.orgItem Mesoscope: A Web-based Tool for Mesoscale Data Integration and Curation(The Eurographics Association, 2020) Autin, Ludovic; Maritan, Martina; Barbaro, Brett A.; Gardner, Adam; Olson, Arthur J.; Sanner, Michel; Goodsell, David S.; Byška, Jan and Krone, Michael and Sommer, BjörnInterest is growing for 3D models of the biological mesoscale, the intermediate scale between the nanometer scale of molecular structure and micrometer scale of cellular biology. However, it is currently difficult to gather, curate and integrate all the data required to define such models. To address this challenge we developed Mesoscope (mesoscope.scripps.edu/beta), a web-based data integration and curation tool. Mesoscope allows users to begin with a listing of molecules (such as data from proteomics), and to use resources at UniProt and the PDB to identify, prepare and validate appropriate structures and representations for each molecule, ultimately producing a portable output file used by CellPACK and other modeling tools for generation of 3D models of the biological mesoscale. The availability of this tool has proven essential in several exploratory applications, given the high complexity of mesoscale models and the heterogeneity of the available data sources.Item MolVa 2020: Frontmatter(The Eurographics Association, 2020) Byška, Jan; Krone, Michael; Sommer, Björn; Byška, Jan and Krone, Michael and Sommer, BjörnItem Molecular Binding in a Visuohaptic Environment: An Enhanced Approach in STEM Learning(The Eurographics Association, 2020) Yasmin, Shamima; Quick, Rhianna; Byška, Jan and Krone, Michael and Sommer, BjörnLearning science, technology, engineering, and mathematics (STEM) can be dull in the absence of adequate incentives; students may lose interest in STEM subjects during their high school education. This could result in a decline in enrollment in STEM fields in postsecondary education and employment as well. However, learning can be reinforced in a multimodal environment. For example, a haptic virtual environment (VE) that incorporates both vision and touch can provide better affordance in learning. This multimodal VE may help students to better understand the underlying concepts of molecular formation while pursuing chemistry and related subjects at the secondary level. Visuohaptics may work as an incentive in learning complex molecular structures and become a source of edutainment and extra motivation for students. Thus, a multimodal VE enhances attentiveness and interest among students in pursuing STEM fields in secondary and postsecondary education.Item MolVa 2021: Frontmatter(The Eurographics Association, 2021) Byška, Jan; Krone, Michael; Sommer, Björn; Byška, Jan and Krone, Michael and Sommer, BjörnItem A Collaborative Molecular Graphics Tool for Knowledge Dissemination with Augmented Reality and 3D Printing(The Eurographics Association, 2021) Noizet, Mathieu; Peltier, Valentine; Deleau, Hervé; Dauchez, Manuel; Prévost, Stéphanie; Jonquet-Prevoteau, Jessica; Byška, Jan and Krone, Michael and Sommer, BjörnWe propose in this article a concept called "augmented 3D printing with molecular modeling" as an application framework. Visualization is an essential means to represent complex biochemical and biological objects in order to understand their structures as functions. By pairing augmented reality systems and 3D printing, we propose to design a new collaborative molecular graphics tool (under implementation) for scientific visualization and visual analytics. The printed object is then used as a support for the visual augmentation by allowing the superimposition of different visualizations. Thus, still aware of his environment, the user can easily communicate with his collaborators while moving around the object. This user-friendly tool, dedicated to non-initiated scientists, will facilitate the dissemination of knowledge and collaboration between interdisciplinary researchers. Here, we present a first prototype and we focus on the main molecule tracking component. Initial feedback from our users suggests that our proposal is valid, and shows a real interest in this type of tool, with an intuitive interface.Item MolVa 2023: Frontmatter(The Eurographics Association, 2023) Byška, Jan; Krone, Michael; Sommer, Björn; Byška, Jan; Krone, Michael; Sommer, BjörnItem A Virtual and Mixed Reality Platform for Molecular Design & Drug Discovery - Nanome Version 1.24(The Eurographics Association, 2023) Bennie, Simon J.; Maritan, Martina; Gast, Jonathon; Loschen, Marc; Gruffat, Daniel; Bartolotta, Roberta; Hessenauer, Sam; Leija, Edgardo; McCloskey, Steve; Byška, Jan; Krone, Michael; Sommer, BjörnThe success of the design and improvement of nanoscale biomolecules like proteins and small molecule drugs relies on a proper understanding of their three-dimensional structures. Nanome's virtual reality/mixed reality (VR/MR) platform provides an immersive and collaborative environment that offers a unique view into the nanoscale world. The platform enables faster and more effective ideation, improved communication of scientific concepts, and multiple tools for lead optimization of molecules. The latest 1.24 version of the Nanome platform integrates multi-user collaboration, mixed reality, enhanced avatars, and a flexible Python API for easy integration with various modeling techniques. We describe key elements of this state-of-the-art framework and how it can accelerate the pace of discovery through empowering industry-standard algorithms across domains of digital science. Nanome is available for download at https://home.nanome.ai/setup.