41-Issue 3
Permanent URI for this collection
Browse
Browsing 41-Issue 3 by Subject "Applied computing"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Infographics Wizard: Flexible Infographics Authoring and Design Exploration(The Eurographics Association and John Wiley & Sons Ltd., 2022) Tyagi, Anjul; Zhao, Jian; Patel, Pushkar; Khurana, Swasti; Mueller, Klaus; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasInfographics are an aesthetic visual representation of information following specific design principles of human perception. Designing infographics can be a tedious process for non-experts and time-consuming, even for professional designers. With the help of designers, we propose a semi-automated infographic framework for general structured and flow-based infographic design generation. For novice designers, our framework automatically creates and ranks infographic designs for a user-provided text with no requirement for design input. However, expert designers can still provide custom design inputs to customize the infographics. We will also contribute an individual visual group (VG) designs dataset (in SVG), along with a 1k complete infographic image dataset with segmented VGs in this work. Evaluation results confirm that by using our framework, designers from all expertise levels can generate generic infographic designs faster than existing methods while maintaining the same quality as hand-designed infographics templates.Item An Interactive Approach for Identifying Structure Definitions(The Eurographics Association and John Wiley & Sons Ltd., 2022) Mikula, Natalia; Dörffel, Tom; Baum, Daniel; Hege, Hans-Christian; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasOur ability to grasp and understand complex phenomena is essentially based on recognizing structures and relating these to each other. For example, any meteorological description of a weather condition and explanation of its evolution recurs to meteorological structures, such as convection and circulation structures, cloud fields and rain fronts. All of these are spatiotemporal structures, defined by time-dependent patterns in the underlying fields. Typically, such a structure is defined by a verbal description that corresponds to the more or less uniform, often somewhat vague mental images of the experts. However, a precise, formal definition of the structures or, more generally, of the concepts is often desirable, e.g., to enable automated data analysis or the development of phenomenological models. Here, we present a systematic approach and an interactive tool to obtain formal definitions of spatiotemporal structures. The tool enables experts to evaluate and compare different structure definitions on the basis of data sets with time-dependent fields that contain the respective structure. Since structure definitions are typically parameterized, an essential part is to identify parameter ranges that lead to desired structures in all time steps. In addition, it is important to allow a quantitative assessment of the resulting structures simultaneously. We demonstrate the use of the tool by applying it to two meteorological examples: finding structure definitions for vortex cores and center lines of temporarily evolving tropical cyclones. Ideally, structure definitions should be objective and applicable to as many data sets as possible. However, finding such definitions, e.g., for the common atmospheric structures in meteorology, can only be a long-term goal. The proposed procedure, together with the presented tool, is just a first systematic approach aiming at facilitating this long and arduous way.Item Mobile and Multimodal? A Comparative Evaluation of Interactive Workplaces for Visual Data Exploration(The Eurographics Association and John Wiley & Sons Ltd., 2022) León, Gabriela Molina; Lischka, Michael; Luo, Wei; Breiter, Andreas; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasMobile devices are increasingly being used in the workplace. The combination of touch, pen, and speech interaction with mobile devices is considered particularly promising for a more natural experience. However, we do not yet know how everyday work with multimodal data visualizations on a mobile device differs from working in the standard WIMP workplace setup. To address this gap, we created a visualization system for social scientists, with a WIMP interface for desktop PCs, and a multimodal interface for tablets. The system provides visualizations to explore spatio-temporal data with consistent WIMP and multimodal interaction techniques. To investigate how the different combinations of devices and interaction modalities affect the performance and experience of domain experts in a work setting, we conducted an experiment with 16 social scientists where they carried out a series of tasks with both interfaces. Participants were significantly faster and slightly more accurate on the WIMP interface. They solved the tasks with different strategies according to the interaction modalities available. The pen was the most used and appreciated input modality. Most participants preferred the multimodal setup and could imagine using it at work. We present our findings, together with their implications for the interaction design of data visualizations.Item Nested Papercrafts for Anatomical and Biological Edutainment(The Eurographics Association and John Wiley & Sons Ltd., 2022) Schindler, Marwin; Korpitsch, Thorsten; Raidou, Renata Georgia; Wu, Hsiang-Yun; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasIn this paper, we present a new workflow for the computer-aided generation of physicalizations, addressing nested configurations in anatomical and biological structures. Physicalizations are an important component of anatomical and biological education and edutainment. However, existing approaches have mainly revolved around creating data sculptures through digital fabrication. Only a few recent works proposed computer-aided pipelines for generating sculptures, such as papercrafts, with affordable and readily available materials. Papercraft generation remains a challenging topic by itself. Yet, anatomical and biological applications pose additional challenges, such as reconstruction complexity and insufficiency to account for multiple, nested structures-often present in anatomical and biological structures. Our workflow comprises the following steps: (i) define the nested configuration of the model and detect its levels, (ii) calculate the viewpoint that provides optimal, unobstructed views on inner levels, (iii) perform cuts on the outer levels to reveal the inner ones based on the viewpoint selection, (iv) estimate the stability of the cut papercraft to ensure a reliable outcome, (v) generate textures at each level, as a smart visibility mechanism that provides additional information on the inner structures, and (vi) unfold each textured mesh guaranteeing reconstruction. Our novel approach exploits the interactivity of nested papercraft models for edutainment purposes.Item Visual Analytics of Contact Tracing Policy Simulations During an Emergency Response(The Eurographics Association and John Wiley & Sons Ltd., 2022) Sondag, Max; Turkay, Cagatay; Xu, Kai; Matthews, Louise; Mohr, Sibylle; Archambault, Daniel; ; Borgo, Rita; Marai, G. Elisabeta; Schreck, TobiasEpidemiologists use individual-based models to (a) simulate disease spread over dynamic contact networks and (b) to investigate strategies to control the outbreak. These model simulations generate complex 'infection maps' of time-varying transmission trees and patterns of spread. Conventional statistical analysis of outputs offers only limited interpretation. This paper presents a novel visual analytics approach for the inspection of infection maps along with their associated metadata, developed collaboratively over 16 months in an evolving emergency response situation. We introduce the concept of representative trees that summarize the many components of a time-varying infection map while preserving the epidemiological characteristics of each individual transmission tree. We also present interactive visualization techniques for the quick assessment of different control policies. Through a series of case studies and a qualitative evaluation by epidemiologists, we demonstrate how our visualizations can help improve the development of epidemiological models and help interpret complex transmission patterns.