Volume 42 (2023)
Permanent URI for this community
Browse
Browsing Volume 42 (2023) by Title
Now showing 1 - 20 of 243
Results Per Page
Sort Options
Item 3D Generative Model Latent Disentanglement via Local Eigenprojection(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Foti, Simone; Koo, Bongjin; Stoyanov, Danail; Clarkson, Matthew J.; Hauser, Helwig and Alliez, PierreDesigning realistic digital humans is extremely complex. Most data‐driven generative models used to simplify the creation of their underlying geometric shape do not offer control over the generation of local shape attributes. In this paper, we overcome this limitation by introducing a novel loss function grounded in spectral geometry and applicable to different neural‐network‐based generative models of 3D head and body meshes. Encouraging the latent variables of mesh variational autoencoders (VAEs) or generative adversarial networks (GANs) to follow the local eigenprojections of identity attributes, we improve latent disentanglement and properly decouple the attribute creation. Experimental results show that our local eigenprojection disentangled (LED) models not only offer improved disentanglement with respect to the state‐of‐the‐art, but also maintain good generation capabilities with training times comparable to the vanilla implementations of the models. Our code and pre‐trained models are available at .Item 3D Keypoint Estimation Using Implicit Representation Learning(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zhu, Xiangyu; Du, Dong; Huang, Haibin; Ma, Chongyang; Han, Xiaoguang; Memari, Pooran; Solomon, JustinIn this paper, we tackle the challenging problem of 3D keypoint estimation of general objects using a novel implicit representation. Previous works have demonstrated promising results for keypoint prediction through direct coordinate regression or heatmap-based inference. However, these methods are commonly studied for specific subjects, such as human bodies and faces, which possess fixed keypoint structures. They also suffer in several practical scenarios where explicit or complete geometry is not given, including images and partial point clouds. Inspired by the recent success of advanced implicit representation in reconstruction tasks, we explore the idea of using an implicit field to represent keypoints. Specifically, our key idea is employing spheres to represent 3D keypoints, thereby enabling the learnability of the corresponding signed distance field. Explicit keypoints can be extracted subsequently by our algorithm based on the Hough transform. Quantitative and qualitative evaluations also show the superiority of our representation in terms of prediction accuracy.Item 3D Object Tracking for Rough Models(The Eurographics Association and John Wiley & Sons Ltd., 2023) Song, Xiuqiang; Xie, Weijian; Li, Jiachen; Wang, Nan; Zhong, Fan; Zhang, Guofeng; Qin, Xueying; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.Visual monocular 6D pose tracking methods for textureless or weakly-textured objects heavily rely on contour constraints established by the precise 3D model. However, precise models are not always available in reality, and rough models can potentially degrade tracking performance and impede the widespread usage of 3D object tracking. To address this new problem, we propose a novel tracking method that handles rough models. We reshape the rough contour through the probability map, which can avoid explicitly processing the 3D rough model itself. We further emphasize the inner region information of the object, where the points are sampled to provide color constrains. To sufficiently satisfy the assumption of small displacement between frames, the 2D translation of the object is pre-searched for a better initial pose. Finally, we combine constraints from both the contour and inner region to optimize the object pose. Experimental results demonstrate that the proposed method achieves state-of-the-art performance on both roughly and precisely modeled objects. Particularly for the highly rough model, the accuracy is significantly improved (40.4% v.s. 16.9%).Item Accelerating Hair Rendering by Learning High-Order Scattered Radiance(The Eurographics Association and John Wiley & Sons Ltd., 2023) KT, Aakash; Jarabo, Adrian; Aliaga, Carlos; Chiang, Matt Jen-Yuan; Maury, Olivier; Hery, Christophe; Narayanan, P. J.; Nam, Giljoo; Ritschel, Tobias; Weidlich, AndreaEfficiently and accurately rendering hair accounting for multiple scattering is a challenging open problem. Path tracing in hair takes long to converge while other techniques are either too approximate while still being computationally expensive or make assumptions about the scene. We present a technique to infer the higher order scattering in hair in constant time within the path tracing framework, while achieving better computational efficiency. Our method makes no assumptions about the scene and provides control over the renderer's bias & speedup. We achieve this by training a small multilayer perceptron (MLP) to learn the higher-order radiance online, while rendering progresses. We describe how to robustly train this network and thoroughly analyze our resulting renderer's characteristics. We evaluate our method on various hairstyles and lighting conditions. We also compare our method against a recent learning based & a traditional real-time hair rendering method and demonstrate better quantitative & qualitative results. Our method achieves a significant improvement in speed with respect to path tracing, achieving a run-time reduction of 40%-70% while only introducing a small amount of bias.Item Accompany Children's Learning for You: An Intelligent Companion Learning System(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Qian, Jiankai; Jiang, Xinbo; Ma, Jiayao; Li, Jiachen; Gao, Zhenzhen; Qin, Xueying; Hauser, Helwig and Alliez, PierreNowadays, parents attach importance to their children's primary education but often lack time and correct pedagogical principles to accompany their children's learning. Besides, existing learning systems cannot perceive children's emotional changes. They may also cause children's self‐control and cognitive problems due to smart devices such as mobile phones and tablets. To tackle these issues, we propose an intelligent companion learning system to accompany children in learning English words, namely the . The IARE realizes the perception and feedback of children's engagement through the intelligent agent (IA) module, and presents the humanized interaction based on projective Augmented Reality (AR). Specifically, IA perceives the children's learning engagement change and spelling status in real‐time through our online lightweight temporal multiple instance attention module and character recognition module, based on which analyses the performance of the individual learning process and gives appropriate feedback and guidance. We allow children to interact with physical letters, thus avoiding the excessive interference of electronic devices. To test the efficacy of our system, we conduct a pilot study with 14 English learning children. The results show that our system can significantly improve children's intrinsic motivation and self‐efficacy.Item Adversarial Interactive Cartoon Sketch Colourization with Texture Constraint and Auxiliary Auto‐Encoder(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Liu, Xiaoyu; Zhu, Shaoqiang; Zeng, Yao; Zhang, Junsong; Hauser, Helwig and Alliez, PierreColouring cartoon sketches can help children develop their intellect and inspire their artistic creativity. Unlike photo colourization or anime line art colourization, cartoon sketch colourization is challenging due to the scarcity of texture information and the irregularity of the line structure, which is mainly reflected in the phenomenon of colour‐bleeding artifacts in generated images. We propose a colourization approach for cartoon sketches, which takes both sketches and colour hints as inputs to produce impressive images. To solve the problem of colour‐bleeding artifacts, we propose a multi‐discriminator colourization framework that introduces a texture discriminator in the conditional generative adversarial network (cGAN). Then we combined this framework with a pre‐trained auxiliary auto‐encoder, where an auxiliary feature loss is designed to further improve colour quality, and a condition input is introduced to increase the generalization ability over hand‐drawn sketches. We present both quantitative and qualitative evaluations, which prove the effectiveness of our proposed method. We test our method on sketches of varying complexity and structure, then build an interactive programme based on our model for user study. Experimental results demonstrate that the method generates natural and consistent colour images in real time from sketches drawn by non‐professionals.Item ARAP Revisited Discretizing the Elastic Energy using Intrinsic Voronoi Cells(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Finnendahl, Ugo; Schwartz, Matthias; Alexa, Marc; Hauser, Helwig and Alliez, PierreAs‐rigid‐as‐possible (ARAP) surface modelling is widely used for interactive deformation of triangle meshes. We show that ARAP can be interpreted as minimizing a discretization of an elastic energy based on non‐conforming elements defined over dual orthogonal cells of the mesh. Using the Voronoi cells rather than an orthogonal dual of the extrinsic mesh guarantees that the energy is non‐negative over each cell. We represent the intrinsic Delaunay edges extrinsically as polylines over the mesh, encoded in barycentric coordinates relative to the mesh vertices. This modification of the original ARAP energy, which we term , remedies problems stemming from non‐Delaunay edges in the original approach. Unlike the spokes‐and‐rims version of the ARAP approach it is less susceptible to the triangulation of the surface. We provide examples of deformations generated with iARAP and contrast them with other versions of ARAP. We also discuss the properties of the Laplace‐Beltrami operator implicitly introduced with the new discretization.Item Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Filipov, Velitchko; Arleo, Alessio; Miksch, Silvia; Hauser, Helwig and Alliez, PierreNetworks are abstract and ubiquitous data structures, defined as a set of data points and relationships between them. Network visualization provides meaningful representations of these data, supporting researchers in understanding the connections, gathering insights, and detecting and identifying unexpected patterns. Research in this field is focusing on increasingly challenging problems, such as visualizing dynamic, complex, multivariate, and geospatial networked data. This ever‐growing, and widely varied, body of research led to several surveys being published, each covering one or more disciplines of network visualization. Despite this effort, the variety and complexity of this research represents an obstacle when surveying the domain and building a comprehensive overview of the literature. Furthermore, there exists a lack of clarification and uniformity between the terminology used in each of the surveys, which requires further effort when mapping and categorizing the plethora of different visualization techniques and approaches. In this paper, we aim at providing researchers and practitioners alike with a “roadmap” detailing the current research trends in the field of network visualization. We design our contribution as a meta‐survey where we discuss, summarize, and categorize recent surveys and task taxonomies published in the context of network visualization. We identify more and less saturated disciplines of research and consolidate the terminology used in the surveyed literature. We also survey the available task taxonomies, providing a comprehensive analysis of their varying support to each network visualization discipline and by establishing and discussing a classification for the individual tasks. With this combined analysis of surveys and task taxonomies, we provide an overarching structure of the field, from which we extrapolate the current state of research and promising directions for future work.Item Attention And Positional Encoding Are (Almost) All You Need For Shape Matching(The Eurographics Association and John Wiley & Sons Ltd., 2023) Raganato, Alessandro; Pasi, Gabriella; Melzi, Simone; Memari, Pooran; Solomon, JustinThe fast development of novel approaches derived from the Transformers architecture has led to outstanding performance in different scenarios, from Natural Language Processing to Computer Vision. Recently, they achieved impressive results even in the challenging task of non-rigid shape matching. However, little is known about the capability of the Transformer-encoder architecture for the shape matching task, and its performances still remained largely unexplored. In this paper, we step back and investigate the contribution made by the Transformer-encoder architecture compared to its more recent alternatives, focusing on why and how it works on this specific task. Thanks to the versatility of our implementation, we can harness the bi-directional structure of the correspondence problem, making it more interpretable. Furthermore, we prove that positional encodings are essential for processing unordered point clouds. Through a comprehensive set of experiments, we find that attention and positional encoding are (almost) all you need for shape matching. The simple Transformer-encoder architecture, coupled with relative position encoding in the attention mechanism, is able to obtain strong improvements, reaching the current state-of-the-art.Item Authoring Terrains with Spatialised Style(The Eurographics Association and John Wiley & Sons Ltd., 2023) Perche, Simon; Peytavie, Adrien; Benes, Bedrich; Galin, Eric; Guérin, Eric; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.Various terrain modelling methods have been proposed for the past decades, providing efficient and often interactive authoring tools. However, they seldom include any notion of style, which is critical for designers in the entertainment industry. We introduce a new generative network method that bridges the gap between automatic terrain synthesis and authoring, providing a versatile set of authoring tools allowing spatialised style. We build upon the StyleGAN2 architecture and extend it with authoring tools. Given an input sketch or existing elevation map, our method generates a terrain with features that can be authored, enhanced, and augmented using interactive brushes and style manipulation tools. The strength of our approach lies in the versatility and interoperability of the different tools. We validate our method quantitatively with drainage calculation against other previous techniques and qualitatively by asking users to follow a prompt or freely create a terrain.Item Balancing Rotation Minimizing Frames with Additional Objectives(The Eurographics Association and John Wiley & Sons Ltd., 2023) Mossman, Christopher; Bartels, Richard H.; Samavati, Faramarz F.; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.When moving along 3D curves, one may require local coordinate frames for visited points, such as for animating virtual cameras, controlling robotic motion, or constructing sweep surfaces. Often, consecutive coordinate frames should be similar, avoiding sharp twists. Previous work achieved this goal by using various methods to approximate rotation minimizing frames (RMFs) with respect to a curve's tangent. In this work, we use Householder transformations to construct preliminary tangentaligned coordinate frames and then optimize these initial frames under the constraint that they remain tangent-aligned. This optimization minimizes the weighted sum of squared distances between selected vectors within the new frames and fixed vectors outside them (such as the axes of previous frames). By selecting different vectors for this objective function, we reproduce existing RMF approximation methods and modify them to consider additional objectives beyond rotation minimization. We also provide some example computer graphics use cases for this new frame tracking.Item Been There, Seen That: Visualization of Movement and 3D Eye Tracking Data from Real-World Environments(The Eurographics Association and John Wiley & Sons Ltd., 2023) Pathmanathan, Nelusa; Öney, Seyda; Becher, Michael; Sedlmair, Michael; Weiskopf, Daniel; Kurzhals, Kuno; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasThe distribution of visual attention can be evaluated using eye tracking, providing valuable insights into usability issues and interaction patterns. However, when used in real, augmented, and collaborative environments, new challenges arise that go beyond desktop scenarios and purely virtual environments. Toward addressing these challenges, we present a visualization technique that provides complementary views on the movement and eye tracking data recorded from multiple people in realworld environments. Our method is based on a space-time cube visualization and a linked 3D replay of recorded data. We showcase our approach with an experiment that examines how people investigate an artwork collection. The visualization provides insights into how people moved and inspected individual pictures in their spatial context over time. In contrast to existing methods, this analysis is possible for multiple participants without extensive annotation of areas of interest. Our technique was evaluated with a think-aloud experiment to investigate analysis strategies and an interview with domain experts to examine the applicability in other research fields.Item Belief Decay or Persistence? A Mixed-method Study on Belief Movement Over Time(The Eurographics Association and John Wiley & Sons Ltd., 2023) Gupta, Shrey; Karduni, Alireza; Wall, Emily; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasWhen individuals encounter new information (data), that information is incorporated with their existing beliefs (prior) to form a new belief (posterior) in a process referred to as belief updating. While most studies on rational belief updating in visual data analysis elicit beliefs immediately after data is shown, we posit that there may be critical movement in an individual's beliefs when elicited immediately after data is shown v. after a temporal delay (e.g., due to forgetfulness or weak incorporation of the data). Our paper investigates the hypothesis that posterior beliefs elicited after a time interval will ''decay'' back towards the prior beliefs compared to the posterior beliefs elicited immediately after new data is presented. In this study, we recruit 101 participants to complete three tasks where beliefs are elicited immediately after seeing new data and again after a brief distractor task. We conduct (1) a quantitative analysis of the results to understand if there are any systematic differences in beliefs elicited immediately after seeing new data or after a distractor task and (2) a qualitative analysis of participants' reflections on the reasons for their belief update. While we find no statistically significant global trends across the participants beliefs elicited immediately v. after the delay, the qualitative analysis provides rich insight into the reasons for an individual's belief movement across 9 prototypical scenarios, which includes (i) decay of beliefs as a result of either forgetting the information shown or strongly held prior beliefs, (ii) strengthening of confidence in updated beliefs by positively integrating the new data and (iii) maintaining a consistently updated belief over time, among others. These results can guide subsequent experiments to disambiguate when and by what mechanism new data is truly incorporated into one's belief system.Item Beyond Alternative Text and Tables: Comparative Analysis of Visualization Tools and Accessibility Methods(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kim, Nam Wook; Ataguba, Grace; Joyner, Shakila Cherise; Zhao, Chuangdian; Im, Hyejin; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasModern visualization software and programming libraries have made data visualization construction easier for everyone. However, the extent of accessibility design they support for blind and low-vision people is relatively unknown. It is also unclear how they can improve chart content accessibility beyond conventional alternative text and data tables. To address these issues, we examined the current accessibility features in popular visualization tools, revealing limited support for the standard accessibility methods and scarce support for chart content exploration. Next, we investigate two promising accessibility approaches that provide off-the-shelf solutions for chart content accessibility: structured navigation and conversational interaction. We present a comparative evaluation study and discuss what to consider when incorporating them into visualization tools.Item BPM: Blended Piecewise Möbius Maps(The Eurographics Association and John Wiley & Sons Ltd., 2023) Rorberg, Shir; Vaxman, Amir; Ben-Chen, Mirela; Memari, Pooran; Solomon, JustinWe propose a novel Möbius interpolator that takes as an input a discrete map between the vertices of two planar triangle meshes, and outputs a continuous map on the input domain. The output map interpolates the discrete map, is continuous between triangles, and has low quasi-conformal distortion when the input map is discrete conformal. Our map leads to considerably smoother texture transfer compared to the alternatives, even on very coarse triangulations. Furthermore, our approach has a closed-form expression, is local, applicable to any discrete map, and leads to smooth results even for extreme deformations. Finally, by working with local intrinsic coordinates, our approach is easily generalizable to discrete maps between a surface triangle mesh and a planar mesh, i.e., a planar parameterization. We compare our method with existing approaches, and demonstrate better texture transfer results, and lower quasi-conformal errors.Item Break and Splice: A Statistical Method for Non‐Rigid Point Cloud Registration(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Gao, Qinghong; Zhao, Yan; Xi, Long; Tang, Wen; Wan, Tao Ruan; Hauser, Helwig and Alliez, Pierre3D object matching and registration on point clouds are widely used in computer vision. However, most existing point cloud registration methods have limitations in handling non‐rigid point sets or topology changes (. connections and separations). As a result, critical characteristics such as large inter‐frame motions of the point clouds may not be accurately captured. This paper proposes a statistical algorithm for non‐rigid point sets registration, addressing the challenge of handling topology changes without the need to estimate correspondence. The algorithm uses a novel framework to treat the non‐rigid registration challenges as a reproduction process and a Dirichlet Process Gaussian Mixture Model (DPGMM) to cluster a pair of point sets. Labels are assigned to the source point set with an iterative classification procedure, and the source is registered to the target with the same labels using the Bayesian Coherent Point Drift (BCPD) method. The results demonstrate that the proposed approach achieves lower registration errors and efficiently registers point sets undergoing topology changes and large inter‐frame motions. The proposed approach is evaluated on several data sets using various qualitative and quantitative metrics. The results demonstrate that the framework outperforms state‐of‐the‐art methods, achieving an average error reduction of about 60% and a registration time reduction of about 57.8%.Item BubbleFormer: Bubble Diagram Generation via Dual Transformer Models(The Eurographics Association and John Wiley & Sons Ltd., 2023) Sun, Jiahui; Zheng, Liping; Zhang, Gaofeng; Wu, Wenming; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.Bubble diagrams serve as a crucial tool in the field of architectural planning and graphic design. With the surge of Artificial Intelligence Generated Content (AIGC), there has been a continuous emergence of research and development efforts focused on utilizing bubble diagrams for layout design and generation. However, there is a lack of research efforts focused on bubble diagram generation. In this paper, we propose a novel generative model, BubbleFormer, for generating diverse and plausible bubble diagrams. BubbleFormer consists of two improved Transformer networks: NodeFormer and EdgeFormer. These networks generate nodes and edges of the bubble diagram, respectively. To enhance the generation diversity, a VAE module is incorporated into BubbleFormer, allowing for the sampling and generation of numerous high-quality bubble diagrams. BubbleFormer is trained end-to-end and evaluated through qualitative and quantitative experiments. The results demonstrate that Bubble- Former can generate convincing and diverse bubble diagrams, which in turn drive downstream tasks to produce high-quality layout plans. The model also shows generalization capabilities in other layout generation tasks and outperforms state-of-the-art techniques in terms of quality and diversity. In previous work, bubble diagrams as input are provided by users, and as a result, our bubble diagram generative model fills a significant gap in automated layout generation driven by bubble diagrams, thereby enabling an end-to-end layout design and generation. Code for this paper is at https://github.com/cgjiahui/BubbleFormer.Item A Characterization of Interactive Visual Data Stories With a Spatio‐Temporal Context(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Mayer, Benedikt; Steinhauer, Nastasja; Preim, Bernhard; Meuschke, Monique; Hauser, Helwig and Alliez, PierreLarge‐scale issues with a spatial and temporal context such as the COVID‐19 pandemic, the war against Ukraine, and climate change have given visual storytelling with data a lot of attention in online journalism, confirming its high effectiveness and relevance for conveying stories. Thus, new ways have emerged that expand the space of visual storytelling techniques. However, interactive visual data stories with a spatio‐temporal context have not been extensively studied yet. Particularly quantitative information about the used layout and media, the visual storytelling techniques, and the visual encoding of space‐time is relevant to get a deeper understanding of how such stories are commonly built to convey complex information in a comprehensible way. Covering these three aspects, we propose a design space derived by merging and adjusting existing approaches, which we used to categorize 130 collected web‐based visual data stories with a spatio‐temporal context from between 2018 and 2022. An analyzis of the collected data reveals the power of large‐scale issues to shape the landscape of storytelling techniques and a trend towards a simplified consumability of stories. Taken together, our findings can serve story authors as inspiration regarding which storytelling techniques to include in their own spatio‐temporal data stories.Item ChemoGraph: Interactive Visual Exploration of the Chemical Space(The Eurographics Association and John Wiley & Sons Ltd., 2023) Kale, Bharat; Clyde, Austin; Sun, Maoyuan; Ramanathan, Arvind; Stevens, Rick; Papka, Michael E.; Bujack, Roxana; Archambault, Daniel; Schreck, TobiasExploratory analysis of the chemical space is an important task in the field of cheminformatics. For example, in drug discovery research, chemists investigate sets of thousands of chemical compounds in order to identify novel yet structurally similar synthetic compounds to replace natural products. Manually exploring the chemical space inhabited by all possible molecules and chemical compounds is impractical, and therefore presents a challenge. To fill this gap, we present ChemoGraph, a novel visual analytics technique for interactively exploring related chemicals. In ChemoGraph, we formalize a chemical space as a hypergraph and apply novel machine learning models to compute related chemical compounds. It uses a database to find related compounds from a known space and a machine learning model to generate new ones, which helps enlarge the known space. Moreover, ChemoGraph highlights interactive features that support users in viewing, comparing, and organizing computationally identified related chemicals. With a drug discovery usage scenario and initial expert feedback from a case study, we demonstrate the usefulness of ChemoGraph.Item Combating Spurious Correlations in Loose-fitting Garment Animation Through Joint-Specific Feature Learning(The Eurographics Association and John Wiley & Sons Ltd., 2023) Diao, Junqi; Xiao, Jun; He, Yihong; Jiang, Haiyong; Chaine, Raphaëlle; Deng, Zhigang; Kim, Min H.We address the 3D animation of loose-fitting garments from a sequence of body motions. State-of-the-art approaches treat all body joints as a whole to encode motion features, which usually gives rise to learned spurious correlations between garment vertices and irrelevant joints as shown in Fig. 1. To cope with the issue, we encode temporal motion features in a joint-wise manner and learn an association matrix to map human joints only to most related garment regions by encouraging its sparsity. In this way, spurious correlations are mitigated and better performance is achieved. Furthermore, we devise the joint-specific pose space deformation (PSD) to decompose the high-dimensional displacements as the combination of dynamic details caused by individual joint poses. Extensive experiments show that our method outperforms previous works in most indicators. Moreover, garment animations are not interfered with by artifacts caused by spurious correlations, which further validates the effectiveness of our approach. The code is available at https://github.com/qiji77/JointNet.